

VePAL TX300S

Advanced OTN, SDH/SONET, PDH/ DSn, Ethernet, Synchronous Packet Networks and FTTx Test Set

Platform Highlights

Now with

OTDR Option Refer to the TX300S Fiber Optics spec sheet for details.

- All-in-One hardware platform reduces CAPEX
- The VeExpress ecosystem allows users to Buy, Rent, Lease-toown and share test feature licenses to optimize OPEX
- Optimized for field engineers or technicians installing and maintaining OTN, SDH/SONET, and Carrier Ethernet networks transporting legacy and next generation Mobile Backhaul networks
- Flexible Software platform allows for multiple test applications running simultaneously
- Available in Single or Dual-port versions with optional OTDR
- Test set connectivity via Ethernet Management interface, Wi-Fi, Bluetooth®, or Data Card for back office applications and workflow optimization
- User defined test profiles and thresholds
- Fast and efficient test result transfer to USB memory stick
- Asset Management: Maintain instrument software, manage test configurations, process measurement results and generate customer test reports using VeExpress
- Interchangeable Li-ion battery pack extends field testing time

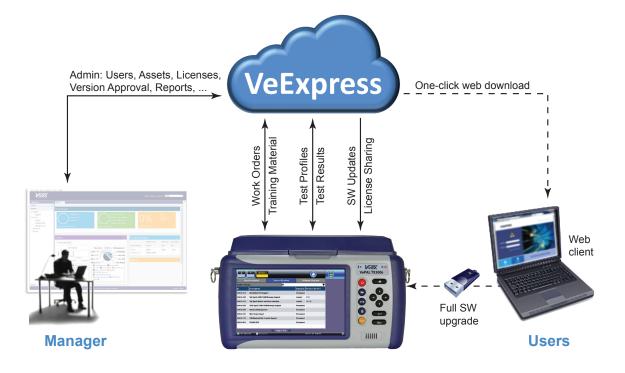
SyncE/IEEE 1588v2

- Fully integrated solution for synchronized packet networks
- Supports IEEE 1588v2/PTP and SyncE/ITU-T G.8261 standards
- Master Clock and Slave clock emulation
- IEEE 1588v2/PTP protocol monitoring and decoding
- IEEE 1588v2/PTP PDV analysis
- Clock recovery from SyncE or PTP and output to physical port
- ESMC SSM generation, monitoring, and decoding

Field-configurable Transport, Mobile Backhaul, Carrier Ethernet and OTDR Test Set

A full featured portable test solution for OTN, SDH, SONET, PDH and DSn networks, the TX300S offers extensive support for Mobile Backhaul technologies with SyncE, 1588v2 PTP, Carrier Ethernet, CPRI/OBSAI and Fiber Optics testing.

OTN/SDH/PDH


- Optical SDH/SONET testing for STM-0/1/4/16/64 and OC1/3/12/48/192; including STM-0/1e (STS-1/3) electrical
- OTN testing for ODU0, ODU Flex, OTU1, OTU2, OTU1e/OTU2e
- PDH/DSn testing at E1, E2, E3, E4, DS1, DS3
- Non-intrusive Pulse Mask Analysis at E1, E3 and DS1, DS3 rates
- Automatic Protection Switching and Service Disruption
- Round Trip Delay on all interfaces and payload mappings
- Overhead Monitoring and Byte decoding
- Tandem Connection Monitoring
- Jitter/Wander Analysis (E1, E3, DS1, DS3 and STM-10, OC-3)

Ethernet/Fibre Channel

- 10GE LAN/WAN XFP, 100Base-FX/1000Base-X SFP, 10/100/1000Base-T RJ45 ports
- 1G/2G/4G/8G/10G Fibre Channel support for Storage Area Networks
- RFC2544 Throughput, latency, frame loss and back to back tests
- V-SAM test suite compliant with ITU-T Y.1564 standard
- Q in Q (VLAN stacking), MPLS, MPLS-TP, PBB support
- IEEE 802.3ah, ITU-T Y.1731, IEEE 802.1ag, and MPLS-TP OAM support
- RFC6349 V-PERF TCP test suite

CPRI/OBSAI Testing

- Common Public Radio Interface standard (CPRI): supports all rates from 614.4 Mbps to 9.8304 Gbps
- Open Base Station Architecture Initiative (OBSAI): supports all rates from 768 Mbps to 6.144 Gbps
- Unframed, Layer 1 Framed and Layer 2 BER testing with PRBS stress patterns
- Latency measurements

VeExpress[™]

Minimize CAPEX and optimize OPEX by managing your TX300S fleet with VeExpress. The TX300S provides an all-inclusive test platform* at lower cost while VeExpress manages the test sets, test functions licenses and workflow in real time.

Stop purchasing test sets loaded with extra features, just in case, or placing multiple orders with varying configurations for different user groups. Reduce your CAPEX by buying what you really need and proactively manage your software and hardware assets.

Own, Rent or Lease-to-own only the required test features, in the right quantities, to optimize your OPEX

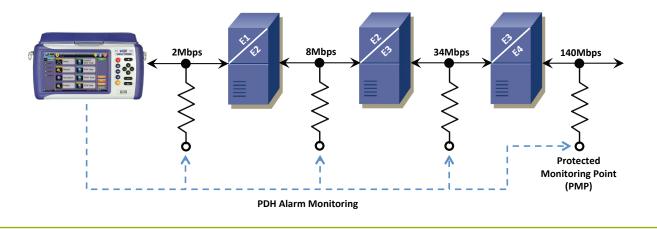
- Buy commonly used test functions required to get the day-to-day job done
- Lease newly adopted technologies without the risk of paying for it up-front
- Rent test features used on a contingency-basis for special cases or projects. Rent ticker only starts when the feature is first assigned and used
- Share the software license pool among different users, including owned, leased and rented features.

VeExpress secure cloud-based environment provides the redundancy and speed of geographically-distributed servers around the world as well as scalability and up time. Test sets and web clients automatically connect to the closest/fastest server available.

Workflow Optimization

- Manage work orders (trouble tickets)
- Quickly download, upload and share test profiles and test results
- Improve first-dispatch success by making sure test sets are up-to-date, have all required test options, and the right test profiles to get each job done right the first time
- Missing a test function? Supervisors can assign test features on the go, making them immediately available in the test set, using VeExpress. Less time wasted due to unexpected cases

Asset Management


- Buy, Rent or Lease new test functions
- Share test features assignment with floating licenses. Test features are no longer tied to specific test sets, so software assets can be reallocated as needed
- Track test sets and usage
- Manage software versions to keep all test sets aligned to the latest approved software version. With time saving "Delta Push" software upgrade mechanism, no need for a full software upgrade each time
- Simple to use VeEXpress user interface integrated into the TX300S to avoid getting in the way of users' daily tasks
- Intuitive web-based VeEXpress client interface for users and managers
- Customized reporting

* Excludes optional factory-installed hardware options such as 8GFC, GPS, Atomic Clock or pluggable optics

PDH/DSn Applications

PDH and T-Carrier (DSn) multiplexing and transmission systems developed in the 1960s and 1970s comprise the first generation of digital telecommunications network technology. While these networks have subsequently evolved to include long-distance, high-capacity trunks and OTN, SDH, SONET rings, PDH and DSn network segments are frequently retained for access, service delivery, and economic reasons. As such, testing PDH and T-Carrier networks will continue for several years to come.

The TX300S provides PDH and DSn test capabilities and sub-rates from 140 Mbps (E4), 34 Mbps (E3), 8 Mbps (E2), 2 Mbps, down to N/M × 64 kbps and 45 Mbps (DS3), 1.5 Mbps (DS1), down to N/M × 56 kbps. Additional test features include simultaneous multilayer G.821, G.826, M.2100 results, Pulse Mask analysis and Round Trip Delay. The test rates also supports mapping and de-mapping of E1, E3, and E4 payloads in virtual containers and testing of TU-11, TU-12, TU-3, and STS-1, making it ideal for testing hybrid PDH/SDH and DSn/SONET networks.

PDH/DSn Features

Auto Configuration

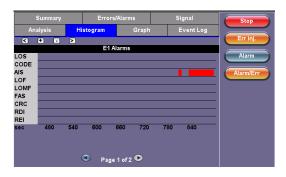
Auto configure simplifies instrument setup when properties of the incoming test signal are unknown. This feature allows novice users to start performing measurements quickly.

DS1 Multi-BERT[™]

Bring into service and troubleshoot DS1 links quickly by automatically generating different test patters in a sequential BER test. Since certain test patterns can help identify and test for specific problems or behaviors, the test sequence can be customized with specific test patterns and timings to target specific test scenarios, like checking for proper line coding settings, framing, or clock recovery.

DS1 Loopback Commands

Enhanced DS1 Loopback commands enable users to singlehandedly test DS1 links by activating automated loopbacks in the desired network elements.


Intuitive Test Results

A summary screen quickly reports signal status and critical Error and Alarm parameters with easy-to-read Pass/Fail indicators. Additional screens accessed via a simple tab system display signal levels, anomalies and events.

Powerful Measurement Histograms

Visual presentation of simultaneous measurement results with 1-second resolution simplifies correlation of alarms and errors.

Pulse Mask Analysis

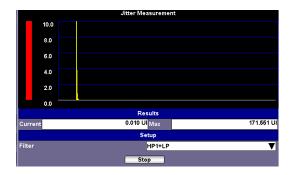
PDH/DSn signals may fail pulse mask requirements due to interference, excessive cable length, improper impedance, or poor transmitter design. In such cases, G.703 pulse mask compliance is very useful in diagnosing related problems.

ISDN/VF TESTING, JITTER & WANDER

ISDN Testing

The ISDN option provides most of the functionality necessary for testing and troubleshooting DS1 or E1 Primary Rate connections including SIP Trunk replacement. Operating in TE, NT or Monitor modes, the unit is able to setup and receive ISDN calls with user-defined parameters including call control protocol, called number and related facilities.

Protocol functions feature detailed signaling statistics, message monitoring and decode, and complete result presentation. With these capabilities, analysis of international and national ISDN, and other access protocols is possible.

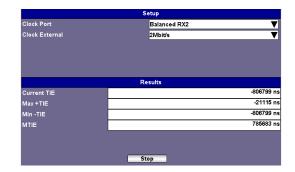

Jitter and Wander

Data integrity in synchronous networks depends largely on the phase stability of clock and data signals. Per the ITU-T G.810 recommendation, the term Jitter is employed when the frequency of the unwanted phase modulation is greater than 10 Hz. When the frequencies are less than 10 Hz, the unwanted modulation is referred to as Wander. In SDH/SONET networks there is a great potential for the accumulation of jitter to degrade network performance, thus it is imperative that components and the network as a whole be tested and screened regularly for jitter to ensure that optimum levels of quality can be maintained.

Jitter Metrics

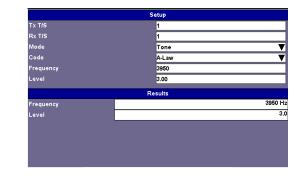
Output jitter performance mandated by ITU-T 0.171/0.172 and Telcordia GR-499/253 standards is evaluated by measuring the recovered clock of the incoming signal (E1, E3, STM-10 and DS1, DS3, OC-3) traversing the network.

Specified in unit intervals (UI), the maximum Peak-to-Peak Jitter is the most important parameter because Max values are indicative of performance, as these extremes generally cause errors. While jitter is defined as any phase variations above 10 Hz, the incoming signal must be filtered in order to measure jitter – the user is therefore able to select between Wide band and High band filters to adjust the measurement bandwidth as required.


Wander Metrics

VF Testing

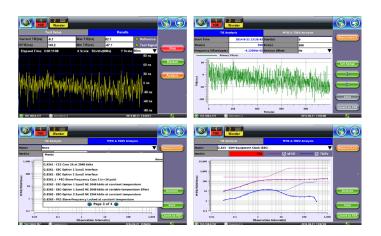
Wander is measured against an external reference clock whereas jitter is normally measured with reference to the clock extracted from the incoming data signal.


The wander external reference clock input accepts clock signals at 1.5 MHz and 2 MHz including signals with bit rates of 64 kbps, 1.544 Mbps and 2.048 Mbps.

Measuring the input signal (E1, E3, STM-10 and DS1, DS3, OC-3) with reference to the external clock signal, the time interval error (TIE) is derived. Unlike jitter results which are reported in Unit Intervals, TIE values are given as absolute time values (ns). MTIE (Maximum Time Interval Error) results report the largest peak-to-peak TIE observed during the measurement period.

The Voice Frequency (VF) option is a basic diagnostic tool to install, verify and troubleshoot voice circuits. Digital to analog conversion tests are performed by inserting/measuring tones with user defined frequency and level on selected sub-rate channels.

The built-in microphone and speaker, or external headset jack, provide access to the Talk & Listen functionality for any time slot. Voice channels can be accessed from any PDH/DSn or SDH/SONET rates carrying framed T1 or E1 payloads.


Jitter and Wander cont'd

JITTER & WANDER, OTN

Built-in MTIE/TDEV Wander Analysis

This option enables the TX300S to analyze up to two days worth of wander measurement data and compare it against standard masks for a PASS/FAIL assessment, without the need for a PC. The analysis can be performed while the test is still running for run-time verification.

- Provides further post-processing of clock stability data, such as MTIE and TDEV
- Frequency offset calculation and removal for relative TIE analysis
- Standard MTIE and TDEV masks
- MTIE and TDEV results and mask export to CSV
- Direct PDF report generation to USB

OTN Applications

Introduction

The OTN test application provides technicians and engineers with a comprehensive and powerful set of test functions required for installing, commissioning, and troubleshooting OTN networks. The optional OTN test suite can be easily activated using VeExpress.

Bit Rates

The TX300S offers various software options to verify compliance to the ITU-T G.709 standard including extended (over clocked) bit rates to ITU-T series G supplement 43 standards. The following OTN test interfaces are available:

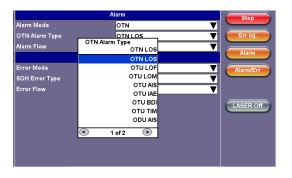
- SFP transceiver supports OTU1 (2.66 Gbps)
- XFP transceiver supports OTU2 (10.7 Gbps), OTU1e (11.049 Gbps) and OTU2e (11.095 Gbps)

Test Applications

Similar to SDH/SONET, OTN networks require both in-service and out-of-service tests to be performed. *In-service* testing involves monitoring an operational network for alarms and errors over a period of time while *out-of-service* testing is typically performed during the commissioning phase to ensure that a network is fully functional before transmitting live traffic.

The network element response test involves sending a stimulus (error or alarm) signal into the OTN Device Under Test (DUT) and monitoring its output and proper response. The response test must be repeated for all possible input stimuli that the DUT is expected to respond to.

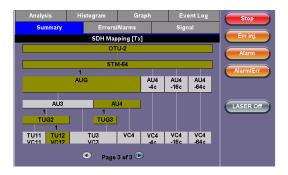
OTN Features


Intuitive Test Signal Setup

Transmitting and receiving ITU-T G.709 compliant OTN signals is quick and simple. The transmitter and receiver can operate independently, or they can be coupled depending on test setup. Framed signals can be equipped with unstructured or structured payloads – a user-selected test pattern fills the entire payload (Bulk) or a structured payload (SDH/SONET framed client signal) is used. Scrambling and Forward Error Correction (FEC) can be enabled or disabled to verify applicable circuitry.

Error Insertion and Alarm Generation

Alarms and Errors can be applied to the OTN signal or to the payload itself. A full range of PDH/DSn and SDH/SONET anomalies and alarms are supported depending on payload setup. Single errors, preset rates or user-defined error rates are supported.


Monitoring Errors and Alarms

It is possible to monitor OTN anomalies and defects in the SDH/ SONET payload signals. Similarly, bit errors are monitored when the OTN signal payload is a test signal. Soft LEDs display event status continuously while a test is running – errors and alarms are color coded to show present and historical conditions.

Ar	nalysis		Histog	gram		Graph		Ever	nt Log	Stop
	Summ	ary		Error	s/Alarm	s		Signa	l	
Otu	Otu	Odu	RS	MS	AU	HP	τu	LP	E1	Err inj.
Lof	Fas	Ais	Lof	Ais	Ais	Unq	Ais	Unq	Ais	Alarm
Oof	MFas	Oci	Fas	Rdi	Lop	Rdi	Lop	Rdi	Lof	
Lom	Bip	Lck	Tim	B2		Tim	Lom	Rfi	Lom	Alarm/Err
Oom	Bei	Bdi	Oof	Rei		Plm		Tim	Fas	
Ais	CFec	Tim	B1			B 3		Plm	Rdi	
lae	UFec	Plm				Rei		Bip	Crc	LASER Off
Bdi		Bip						Rei	Rei	
Tim		Bei								
	Page 1 of 14									

Advanced Mapping Capability

SDH/SONET client signals can be mapped using bit-synchronous or asynchronous modes. Synchronous means the Optical Payload Unit (OPU) clock is derived from the mapped client signal while Asynchronous means the OPU clock is independent. The mapping structure can be viewed and checked in the Signal summary tab.

Line and Payload Frequency Analysis

Frequency offset present in the Optical Transport Unit (OTU) line frequency or Optical Payload Unit (OPU) are measured accurately. Furthermore, frequency offset applied to the signal by the user regardless of the clock source can also be analyzed.

Overhead Byte Analysis

All overhead bytes in the OTU/ODU/OPU are captured and displayed in hexadecimal format. Direct access to overhead bytes ensures that the DUT performs termination and pass-through operations accurately.

							Ana	lysis							
		F/	AS			MF		SM		GC	C0	R	s	RES	JC
OA1	OA1	OA1	OA2	OA2	OA2		TTI	BIP	BEI						
F6	F6	F6	28	28	28	72	TI	9B	00	00	00	00	00	00	00
	RES TC TCM			тсме			TCM5			тсм4		FT FL	RES	JC	
				TTI	BIP	BEI	TTI	BIP	BEI	TTI	BIP	BEI			
00	00	00	00	TI	E2	01	TL	E2	01	TI	E2	01	FT	00	00
	тсмз			тсм2			тсм1			PM		E)	(P	RES	JC
TTI	BIP	BEI	TTI	BIP	BEI	TTI	BIP	BEI	TTI	BIP	BEI	RR	RR		
TL	24	01	ті	24	01	TI	B 8	01	TI	B 8	00	00	00	00	00
GC	C1	GC	C2		APS	PCC				R	ËS			PSI	NJ
00	00	00	00	00	00	00	00	00	00	00	00	00	00	03	00

SDH/SONET Applications

Installation, commissioning, monitoring and maintenance of SDH/SONET and PDH/DSn networks is simplified thanks to a combination of intuitive features and powerful test functions. SDH signals are often compromised by various impairments in the multiplexing process therefore defining the type of anomaly or defect to isolate the network element or signal path causing the problem is crucial. Fast troubleshooting and comprehensive analysis of transmission problems can be performed using intrusive, non-intrusive and monitoring test modes. Novice users will benefit from the easy-to-use Auto-configuration and Tributary Scan test modes, while experienced users will appreciate the array of advanced features such as Overhead Monitoring and Byte Control, Pointer Test Sequences, Path Trace Generation, Tandem Connection Monitoring and lots more.

Out-of-Service Testing

Applications include:

- BERT
- Tributary Mapping/de-Mapping
- Path/Section Trace Generation
- Bringing Into Service (M.2100)
- Pulse Mask Analysis (E1/E3/DS1/DS3)
- Mux Testing
- Round Trip Delay
- Pointer Test Sequences
- Jitter Generation, MTJ, JTF

In-Service Monitoring

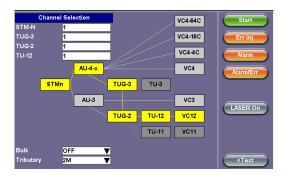
Applications include:

- Optical Power and Frequency
- Tributary Scanning
- Performance Analysis per G.826, G.828, G.829, M.2101
- Pointer Analysis and Generation
- APS Measurement
- Tandem Connection Monitoring
- Overhead Byte Control and Decode
- Jitter and Wander Measurements

SDH/SONET Features

Quick and Easy Graphical Setup

Complex daily tasks are common in today's network environment, therefore technicians need a tester that is quick and easy to configure. Intuitive graphics, drop down menus and touch -screen operation greatly simplify test interface, signal structure, payload mapping and test pattern setup.


Signal Measurements	s General Auto-config	Start
тх	RX	Errinj
Hierarchy STM-64 - 10G, AU-3	Hierarchy 2M	Alarm
\sim		
Interface Optical	Interface Electrical,BNC	Alarm/Er
Structure VC12, 1.1.1		LASER OF
<u> </u>		
Payload Nx64,PCM30C	Payload 2M,PCM30C	
Pattern 2^31-1	Pattern 2^31-1	
RX: 2M		-

Physical Layer Testing

Verifying analog parameters are within prescribed specifications and limits is recommended prior to performing framing and payload analysis. High optical power levels can saturate receiver equipment, while low power levels are susceptible to noise which result in bit errors. Clock tolerances for each individual signal hierarchy is clearly defined by Bellcore/ ITU-T recommendations and should be verified as part of any acceptance/conformance test.

Payload Mappings

Test the operation of Add/Drop Multiplexers, Digital Cross Connects and other Network Elements (NE) by verifying the mapping and de-mapping of different tributaries and payloads into SDH or SONET containers and monitor anomalies and defects according to ITU-T G.707 and GR-253 recommendations.

Performance Analysis Summary

Performance of each hierarchy is based on Byte Interleaved Parity (BIP) checksums which are calculated on a frame by frame basis. These BIP checks are inserted into the Regenerator, Multiplexer and Path Overhead, all of which form an integral part of the performance monitoring capabilities of an SDH/ SONET network. The TX300S analysis screens present Pass/Fail criteria for each performance parameter according to ANSI/ITU-T recommendations.

A	nalysis		Histog	gram		Graph		Ever	nt Log	Stop
	Summ	any		Error	s/Alarm	5		Signa	d .	
RS	MS	AU	HP	τu	LP	E3	E2	E1	Pat	SDH FAS
Lof	Ais	Ais	Unq	Ais	Unq	Ais	Ais	Ais	Lss	2M AIS
Fas	Rdi	Lop	Rdi	Lop	Rdi	Lof	Lof	Lof	Bit	
Tim	B2		Tim		Tim	Fas	Fas	Lom		Alarm/Err
Oof	Rei		Plm		Plm	Rdi	Rdi	Fas		
B1			B 3		B 3			Rdi		
			Rei		Rei			Crc		LASER Off
								Rei		
		(•	Page	e 1 of 10	•				

SDH/SONET Features cont'd

Overhead Analysis

Binary and hexadecimal decode of all Section and Path overhead bytes are performed.

	SOH			РОН			Summary	
A1 F6	A1 F6	A1 F6	A2 28	A2 28	A2 28	J0 01	ÄÄ	ÄÄ
B1 65	ōō	öö	E1 00	ōō	öö	F1 00	öö	ōō
D1 00	ōō	öö	D2 00	öö	öö	D3 00	öö	ōō
H1 6A	H1 93	H1 93	H2 0A	H2 FF	H2 FF	H3 00	H3 00	H3 00
B2 30	B2 A4	B2 8A	K1 00	öö	öö	K2 00	öö	öö
D4 00	õõ	öö	D5 00	õõ	öö	D6 00	öö	öö
D7 00	öö	öö	D8 00	öö	öö	D9 00	öö	öö
D10 00	õõ	öö	D11 00	õõ	öö	D12 00	öö	öö
\$1 00	Z1 00	Z1 00	72 00	72 00	M1 00	E2 00	öö	öö

Overhead Byte Control

Manipulation of transmitted overhead bytes in both terminated and payload through modes enable users to stress the network responses to various conditions.

Synchronous Network Features

IEEE 1588v2/PTP Master Clock Emulation Mode

Master Clock emulation allows network synchronization properties to be verified prior to service delivery or during routine maintenance tasks. Using the internal precision clock or an external 1.544 Mbps, 2.048 Mbps, 1.544 MHz, 2.048 MHz, 10 MHz, 25 MHz, 125 MHz, or 1 PPS signal as the reference clock, the unit generates the PTP messages needed by a Slave device to synchronize.

The reference clock can further be applied to an outgoing 1.544 Mbps or 2.048 Mbps signal via balanced RJ45 or bantam interfaces or alternatively a 1.544 Mbps, 2.048 Mbps, 10 MHz, 25 MHz, 125 MHz, or 1 PPS signal can be generated on the unbalanced BNC port for other synchronization requirements. In this mode, the unit can be programmed to generate PTP messages at different rates to reduce or introduce network congestion.

IEEE 1588v2/PTP Slave Clock Emulation Mode

Emulates a Slave Clock device where synchronized clock is extracted using the PTP procedure. The extracted clock can be applied to an outgoing 1.544 Mbps or 2.048 Mbps signal on the DS1/E1 balanced test port or a 1.544 Mbps, 2.048 Mbps, 10 MHz, 25 MHz, 125 MHz, or 1 PPS reference signal can be made available on the unbalanced BNC port. After an IP layer connection is achieved, clock identities are exchanged between the test unit and the far end Master clock device. The PTP messages can be monitored and decoded. In the Summary tab, an overview of the Total, CRC, lost, error, out of order and duplicated messages are displayed. The Message tab provides a concise record of all PTP message related items, while the Results tab provides detailed statistics and values for Packet Delay Variation (PDV), Round Trip Delay (RTD) and Inter-Packet Gap (IPG). Clock and Wander are measured against the reference clock.

ITU-T G.8261 SyncE Master Clock Emulation Mode

The reference clock can be based on the internal precision clock or from an external clock source at 1.544 Mbps, 2.048 Mbps, 1.544 MHz, 2.048 MHz, 10 MHz, 25 MHz, 125 MHz, or 1 PPS rate. The output reference clock can be synchronized to 1.544 Mbps or 2.048 Mbps and provided at the DS1/E1 port or a 1.544 MHz, 2.048 MHz, 10 MHz, and 1 PPS clock signal can be made available on the unbalanced BNC port.

ITU-T G.8261 SyncE Slave Clock Emulation Mode

Extracts clock information from the incoming Ethernet signal at the 10/100/1000Base-T, 100Base-FX, 1000Base-X, and 10GBase-X interface. The recovered reference clock can be applied to a 1.544 Mbps or 2.048 Mbps signal at the DS1/E1 port or a 1.544 MHz, 2.048 MHz, 10 MHz, 25 MHz, 125 MHz, or 1 PPS clock signal can be made available on the unbalanced BNC port. Clock and Wander are measured against the reference clock.

Synchronization Messages Capture

Message capture and decode for SyncE ESMC/SSM and IEEE 1588v2 messages.

ESMC SSM

ESMC SSM messages generation with configurable type and rate. Includes ESMC SSM messages display and decode, with capture function in pcap format for external analysis.

Ethernet Testing

Generate and analyze Ethernet test traffic in conjunction with SyncE or 1588v2 Master or Slave emulation.

ETHERNET

Ethernet Key Features

RFC2544 Compliance Testing

Performs the RFC2544 automated test suite at all recommended frame sizes as well as user configurable frame sizes and up to full line rate. The test suite can be performed with the far end test partner in loopback mode or peer-to-peer mode - the latter allowing for symmetrical/asymmetrical testing. Thresholds may be configured for accurate SLA assurance and verification. The automated tests supported are throughput, latency, frame loss, and back-to-back frames.

In Advanced SLA Mode this feature combines the powerful multiservice throughput test capabilities with the RFC2544 industry test suite for SLA verification. Using this test function, service providers are able to verify SLAs while end-to-end QoS is assessed properly. By configuring one primary test stream and up to seven background streams each with independent frame size, bandwidth, and more importantly QoS levels, simulating different service applications is now realized. The Advanced RFC2544 SLA mode provides detailed visibility of the test parameters for each of the traffic streams being measured, providing an efficient in-depth qualification in a fast and automated way.

Set	tup	Re	sults	Start			
Throughput	Latency	Frame Loss	Burst				
Header	Fra	ames	Thresholds				
Profile		Last configuratio	n 🔻				
Test Layer		Layer 3	Layer 3 🛛 🔻				
Frame Type		Ethernet II(DIX)	•				
VLAN		Off					
MPLS		Off	▼				
MAC	IP	Data	CRC	LASER On/Off MX Discover Control			

Multiple Streams Generation - Throughput

Up to ten traffic streams can be independently configured with CoS (VLAN priority) and QoS (TOS/DSCP) prioritization. This traffic feature simulates multiple service conditions (e.g. Triple Play), and facilitates end-to-end QoS performance verification. The multiple stream throughput tests may be performed with a second test unit at the far end in Smart Loop mode or Peerto-Peer mode.

Setup	Results	Start
Header Traffic Error Inj.	General Summary OAM	
# of Streams	8	
Stream #1 (%)	10.000	
Stream #2 (%)	1.000	
Stream #3 (%)	10.000	
Stream #4 (%)	50.000	
Stream #5 (%)	1.000	
Stream #6 (%)	1.000	
Stream #7 (%)	10.000	
Stream #8 (%)	17.000	MX Discover
Total (%)	100.000	Control
RTD Measurement	Enable 🗸 🗸	

BERT

Layer 1 unframed (optical ports only), Layer 1 (framed), 2, 3, and Layer 4 BER testing are supported. The BER test can be configured to use regular PRBS test patterns, IEEE stress patterns for 1GE and 10GE LAN unframed modes, or user defined test patterns to simulate various conditions.

Protocol Support

With intuitive graphical based user interface, users can fully customize test traffic at the Layer 2 (MAC header), Layer 3 (IPv4 and IPv6 headers) and Layer 4 (TCP,UDP). The TX300S also offers a complete tool set of advanced network protocols.

Q-in-Q (VLAN stacking)

VLAN stacking, also known as Q-in-Q, makes a provision for carrier/service provider assigned VLANs (SP-VLAN), but also retains customer traffic's VLAN (CE-VLAN). Up to three layers of VLAN tagging supported with configurable VLAN ID, Priority, and VLAN type.

Multiprotocol Label Switching (MPLS)

MPLS technology allows for a more efficient routing of Ethernet/ IP packets via the use of MPLS routers in the network. MPLS labels reside between the MAC (Layer 2) and IP layers (Layer 3). Up to three MPLS tags can be configured in the traffic stream with customizable Label, CoS, and TTL fields.

Provider Backbone Bridging (PBB)

Also known as MAC-in-MAC, PBB (802.1ah) provides a trunking mechanism that adds resiliency and configurable performance levels in the provider backbone network. PBB encapsulation is available for all Ethernet tests with all PBB fields configurable.

Multiprotocol Label Switching Transport Profile (MPLS-TP)

MPLS-TP, a Layer 2 packet-based transport mechanism, is gaining momentum as a transport of choice for access and aggregation networks requiring a technology that combines the operational simplicity of packet switched networks with the operations, administration and maintenance (OAM) tools and fault resiliency capabilities of Circuit switched networks. Fully configurable MPLS-TP header fields including LSP and Pseudowire MPLS-TP support for all Ethernet tests along with MPLS-TP OAM per ITU-T G.8113.1.

	Setup			Results		Start
Header	Traffic	Error Inj.	General	Summary	OAM	
Profile			Last configu	uration	▼	
Stream #			1		▼	
Test Layer			Layer 3			
Frame Type			Ethernet II(I	DIX)	V	
VLAN			Off		▼	
MPLS			2 tags		▼	
MAC	MPLSMPL	S IP		Data	CRC	MX Discover Control

Ethernet cont'd

VeEX's V-SAM test suite is fully compliant with ITU-TY.1564 and offers an efficient method to qualify and troubleshoot Ethernet Services. V-SAM addresses some of RCF2544 limitations by testing multiple services at once and providing simultaneous measurements of key SLA parameters.

With the Service Configuration test, services running on the same line are tested one by one to verify the correct service profile provisioning. With the Service Performance test, the services running on the same line are tested simultaneously over an extended period of time, to verify network robustness.

This test suite was designed with the end user in mind and allows for quick provisioning, execution and analysis of the test results, even without prior detailed knowledge of the standard.

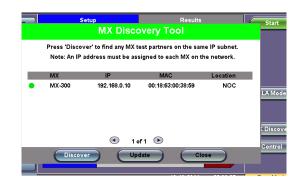
Ethernet OAM Features

The TX300S offers a complete tool set for Link Level (IEEE 802.3ah) and Service Level (IEEE 802.1ag/ ITU- Y.1731) OAM for monitoring and maintaining carrier grade Ethernet services as well as OAM support for MPLS-TP per ITU-T G.8113.1 including G-ACH and GAL labels support per RFC 4385 and RFC 5586.

Link Fault Management testing with 802.3ah OAM, capabilities include:

- Discovery mechanism to verify capabilities and provisioning of link partner
- Remote Loopback command for link performance testing
- Critical Link Event Notification

Connectivity Fault Management testing with 802.1ag and Y.1731, capabilities include:


- Linktrace message to perform path discovery
- Loopback message to test connectivity and isolate faults
- · Continuity check messages to detect connectivity issues

Performance Management testing with Y.1731, capabilities include:

- Frame Loss Measurement (ETH-LM) function for service frame loss ratio measurement
- Delay Measurement (ETH-DM) function for frame delay and frame delay variation measurement

Intelligent Network/Device Discovery

Easily discover and select another VeEX Ethernet tester or loopback device on the network under test. The local device will control the operation of the far end device, in either loopback or peer-to-peer mode (symmetrical or asymmetrical traffic generation mode). This feature greatly simplifies field testing since there is no need for a second technician to be at the far end configuring the test partner device.

Smart Loopbacks

Four modes are available for looping back test traffic. At Layer 1, all incoming traffic is looped back unaltered. At Layer 2, all incoming unicast traffic is looped back with the MAC source and destination addresses swapped. At Layer 3, all incoming unicast traffic is looped back with the MAC and IP source and destination addresses swapped, and at Layer 4, all incoming unicast traffic is looped back with the MAC, IP, and UDP/TCP ports swapped.

Configurable traffic filters are supported on all MAC, IP, and VLAN fields to allow full control over looped traffic. Traffic is monitored while being looped and key traffic metrics such as frame type, rate, and error/alarms are displayed on screen. These can be compared to results at the far end to pinpoint issues more easily.

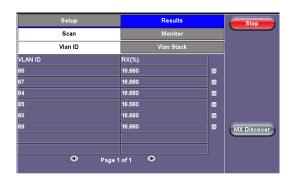
Setu	>			Results		Stop
Summary Errors	Alarms	Event	i Traffic	Delay	Rates	
ST:2011-10-19 23:41:	14	EI	:00:00:24			
		R				
Line Rate (bps)		10	M000.00			
Utilization (%)		10	.001%			
Utilization (bps)		10	0.007M			
Framed Rate (bps)		98	.706M			
Data Rate (bps)		97	.536M			
≇ of Bytes		22	3217448			MX Discover
Pause Frames		0				LINA DISCOVEL

Ethernet cont'd

RFC6349 V-PERF TCP Test

A common source of customer complaints come from file transfer speeds not matching the throughput rates guaranteed in the SLA. While many factors affect TCP applications performance, including customer's operating system hardware performance and settings (TCP window size), carriers need to prove SLA with a test tool that can show TCP performance independent of Operating System or Server limitations and present repeatable reliable results.

The TX300S V-PERF feature uses RFC6349 test methodology and metrics for qualifying network TCP performance. It offers a full line rate stateful TCP test with configurable window sizes, client and server modes as well as compatibility with iPerf servers.


FTP Throughput and VeTest HTTP Throughput Test

FTP Throughput and VeTest features provide additional Layer 4-7 testing. The FTP Throughput feature allows the user to test up to full line rate FTP protocol performance to any FTP Server by uploading and downloading files. The VeTest feature qualifies network HTTP protocol performance by downloading and uploading files to a VeTest HTTP server. Both features can test up to the full line depending on the server specifications and limitations. Connection time to the server, data transfer time, line rate throughput rates, and protocol (FTP and HTTP) throughput rates key metrics are reported during the tests.

Network Troubleshooting Tools

VLAN Scan and Traffic Monitor

VLAN Scan allows scanning up to 4096 VLAN IDs for switch configuration verification. Verify which VLAN IDs are the top bandwidth users and monitor up to eight live traffic streams (in terminate mode).

Delay Measurements

In addition to round trip delay measurements, the TX300S provides advanced one- way delay measurement capabilities. With GPS option one-way delay can be measured between remote test sets. The delay measurements are provided for each independent traffic stream.

Complimentary to the transport layer tests provided with the RFC2544 and V-SAM Y.1564 test suites, the TX300S provides advanced application layer test capabilities with the following functions: Ping test and Trace route, ARP network discovery and HTTP Web browsing.

Setup	Status	Pir	ng	Web/FTP	ТСР	
	Network			Port		
Mode			IPv6			Disconnect
Profile			Default	t		7
P Address			Static		7	
Local IP			2001:dl	b8:1::91		
Subnet			64			
Gateway an	d DNS		Enable			7
Gateway	On	▼	2001:d	o8:1::1		
DNS	Primary	▼	2001:47	0:20::2		
	٩	Page	1 of 2	•		

Wireshark[™] Packet Capture

Live packet capture with Wireshark decode interface. This function captures packets from the Ethernet test ports and provides packet and protocol summaries and Hexadecimal displays. The captures can be saved in standard PCAP format and exported for analysis.

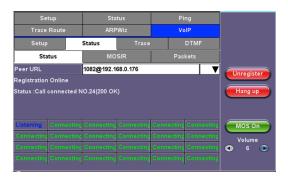
_	T	1	Edit	: disp	olay .	filter				_	_	_	_		_						->
No.	7	Time		5	ourc	e				Dest	inati	on			Τ	Protoco	Lengt	Info			
		3.000	000		92.1	68.0	148			192.	168.	0.82					60	51472	> 11000 IA	CK1 Sea+	=1 Ack
2			004			:a9:b				ff:ff:f						Intel			nce: 756109		
3			019							ff:ff:f						Intel			nce: 756109		
4	_	0.076	027	. 0	0:90	:a9:b	8:07	:f0		ff.ff.f	r:m:n	t:ff				Intel	64	Seque	nce: 756109	Sender	102.1
🗄- Int	ern	et II, et Pro	Src: 1 tocol	18:3 Vers	d:a2 ion 4	:13:4 , Sro	5:48	(18:	3d:a2	13:4 8 (19	5:48), Ds	t: 00 148)	:18:6 , Dst:	3:0	erface 0 0:d0:27 2.168.0 11000),	82 (19)	.168.0	1.82)		
- Int	ern	et II, et Pro	Src: 1 tocol	18:3 Vers	d:a2 ion 4	:13:4 , Sro	5:48	(18:	3d:a2	13:4 8 (19	5:48), Ds	t: 00 148)	:18:6 , Dst:	3:0	0:d0:27	82 (19)	.168.0	1.82)		
⊞-Int ⊕-Tra	ern	et II, et Pro	Src: 3 tocol	18:3 Vers	d:a2 ion 4	:13:4 , Sro	5:48	(18:	3d:a2	13:4 8 (19	5:48), Ds	t: 00 148)):18:6 , Dst: 1100	3:0	0:d0:27	82 (19) Seq: 1,	Ack: 1	1.82)		
🗄- Int	nern Insn	et II, et Pro hission	Src: 3 tocol n Con 63	18:3 Vers trol I	d:a2 ion 4 Proto	:13:4 I, Sro	5:48 :: 19 5rc P	(18: 2.168 ort: 5	3d:a2 1.0.14 1472	13:4 8 (19 (514	5:48 2.1¢ 72),), Ds 8.0. Dst	it: 00 148) Port:	0:18:6 , Dst: 1100	3:0 19: 0 (:	0:d0:27 2.168.0 11000),	82 (19) Seq: 1,	Ack: 1	1.82) , Len: 0		
⊡-Int ⊡-Tra	ern ern nsn	et II, et Pro hission 18	Src: 3 tocol n Con 63	18:3 Vers trol I	d:a2 ion 4 Proto d0	:13:4 4, Src col, 5	15:48 :: 19: 5rc P	3d	3d:a2 0.14 1472 a2	13:4 8 (19 (514	5:48 2.16 72), 45	48	148) Port: 98	0:18:6 , Dst: 1100 90 94	3:0 193 0 (3 45 c0	0:d0:27 2.168.0. 11000), 96	82 (19) Seq: 1,	Ack: 1	EHE.		
ia-Int ia-Tra ia-Tra 0969 0910	ern ern nsn 90	et II, et Pro hission 18 28	Src: 1 tocol n Con 63 10	08 20	d:a2 ion 4 Proto de 4e	27 60	15:48 :: 19: 5rc P	3d 86	3d:a2 10.14 1472 a2 68	13:4 8 (19 (514 13 79	5:48 2.16 72), 45 c0	48 a8	t: 00 148) Port: 88 80	0:18:6 , Dst: 1100 90 94	3:0 193 0 (3 45 c0	0:d0:27 2.168.0 11000), 96 38	82 (19) Seq: 1, c .(. @ .R*	Ack: 1	I.B2) , Len: 0 EHE. .dP.		

VoIP Testing

Take advantage of software options offering different test methods to verify and provision your VoIP network.

VoIP Check – Simulates a VoIP call to the nearest router and measures the round trip MOS score and related VoIP parameters.

The VoIP check mode tests the network readiness for VoIP without placing an active VoIP call. This mode allows for service verification before SIP/H.323 infrastructure is in place or if credentials are not known. This test focuses on packet transmission quality and metrics by sending traffic (ICMP Ping) matching VoIP call traffic properties.


VoIP Expert – VoIP Expert is a simple and effective tool for pre-qualifying VoIP service and verifying triple play implementations.

The VoIP Expert Client/Server mode allows a TX300S test set connected to a VX1000 server to exchange upstream and downstream files to exercise the connection under VoIP calls conditions.

Bi-directional Mean-Opinion-Score (MOS), Transmission-Rating-Factor (R-factor) and other critical network related parameters are measured and test results are displayed on both field test units and the VX1000 software. The VX1000 software can be installed on any server and accepts up to 16 simultaneous VoIP test calls from compatible VePAL100+/300 series products.

Setup	St	atus	Ping	
Trace Route	Web/FTP	ARPWiz	VoIP	
Setup	Status	Trace	DTMF	
Status	Status MOS/R		Events	Start
		UP	DN	
MOS-LQ		4.20	4.20	
MOS-CQ		4.16	4.16	
R-LQ		93	93	
R-CQ		91	91	
Gap R		91	91	

VoIP Call Expert – Emulates an IP phone to place and receive calls using SIP or H.323 protocols. Real-time evaluation of voice quality with a complete set of measurements is available at the end of the call, including packet statistics, jitter statistics, and MOS and R-factor call quality scores. Support VoIP trunk test with bulk call generation of up to 24 simultaneous calls.

IPTV Explorer

IPTV Service Providers nowadays have to ensure the transport layer and MPEG payload are both within defined limits, because simply checking packet loss, jitter and related impairments of the Ethernet distribution network is not enough to evaluate the quality of the IPTV content carried in the upper protocol layers. The TX300S IPTV Explorer option extracts the MPEG payloads from the Ethernet streams, decodes and displays them to check transport and programming content so that QoS and QoE can all be assessed.

Media-Stream-Based Algorithm

A proprietary and sophisticated algorithm analyzes the IP stream to assess and derive video quality and improve accuracy of quality scores.

- Frame structure/GoP detection Identifies I, B, and P frames in both unscrambled and encrypted video streams, to determine GoP length and the rate and distribution of packet loss in each frame
- Per-frame quality computation Quality in each frame using the frame type, frame size, codec type, bandwidth, and packet loss data. For P and B frames, TX300S models the loss propagated from earlier reference (I or P) frames
- Bandwidth estimation the bandwidth used by certain types of video frames is analyzed to estimate the quantization level applied by the video encoder

Program Identifier (PID) Statistics

PID statistics provide critical information about the MPEG transport stream. The bandwidth and packets associated with each individual stream are listed allowing the technician to check the video, audio and data content and to check for any "illegal" PIDs.

Transmission Quality Score

QoS parameters are evaluated and presented in an intuitive manner so that technicians unfamiliar with MPEG signals are able to make accurate decisions to ensure maximum service availability.

- Audio and Video MOS scores associated with the particular video/audio codec used and transmission quality are reported
- VSTQ (Video Service Transmission Quality), is a codecindependent scoring that rates the ability of the network to reliably transport video
- ETSI TR 101 290 metrics are good indicator of transport associated errors

Setup		Anal	ysis	Viewer	
IPTV-TS Summary		Streams Summary		Details	
PID Map		Video	Audio	ETR 290	
	Min	Max	Avg	Below Threshold(%)	
Absolute MOS_V	1.00	2.67		0.000	
Relative MOS_V	1.09	3.20		0.000	
MOS_AV	1.52	2.55	1.81	0.000	
VSTQ		50.00			
EPSNR					
EPSNR ATIS		42.58dB			
		🔍 Pa	age 1 of 4 🛛 💽		

IPTV Image Viewer

The IPTV viewer decodes un-encrypted streams and can be used as a quick channel identifier to verify PID assignment.

FIBRE CHANNEL, CPRI & OBSAI

Fibre Channel Key Features

Key Features

- Single or Dual SFP optical ports supporting 1.0625 Gbps, 2.125 Gbps, and 4.25 Gbps
- Single or Dual XFP optical ports supporting 8.5 Gbps and 10.52 Gbps
- Full line rate traffic generation and analysis
- Primitive Sequence Protocol support
- Flow control support with Buffer-to-Buffer credits
- FC-1 and FC-2 BERT and Throughput
- RFC2544: Throughput, Latency, Frame Loss, and Back-to-Back frames tests
- FC-2 Smart Loop mode
- Service Disruption Measurement
- FC-2 Frame Header configuration
- Test traffic shaping: constant, ramp, and burst
- Frame Length configuration up to 2148 bytes

Throughput and Bit Error Rate Test (BERT)

The Fibre Channel protocol specifies a maximum allowable Bit Error Rate (BER) of \leq 1 x 10-12 that must be achieved. The TX300S allows the user to stress FC-1 and FC-2 network layers to ensure accurate benchmarking.

For FC-1, frequency fluctuations, transceiver noise and phase jumps are tested using CRPAT, CSPAT, and CJPAT patterns. Data dependency and behavior of network components are checked with PRBS patterns, sequence number tracking, and time stamping to calculate frame loss, round trip delay, and other performance metrics.

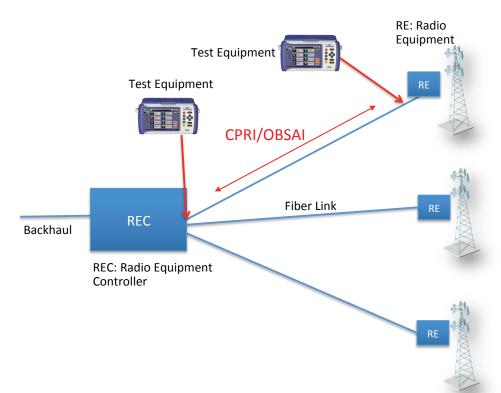
RFC2544 Benchmarking

Based on the Ethernet test methodology, the RFC2544 routine has been adapted to Fiber Channel circuits where flow-control and buffer verification is important. The feature checks throughput and round trip delay at various buffer sizes to verify optimal buffer size and best possible link performance.

CPRI & OBSAI Testing

Traditional deployment of the base station functions are co-located with the radio tower at the base of the antenna or basement of a tall building.

The Common Public Radio Interface (CPRI) and Open Base Station Architecture Initiative (OBSAI) protocols introduce a centralized model where one REC (Radio Equipment Controller) can manage many REs (Radio Equipment). The REC can be physically located far from radio towers in a centralized indoor and temperature controlled location. The CPRI/OBSAI optical link between REC and RE allows long distances (up to 10 km) without loss.

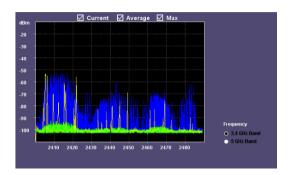

Simplified RE function makes field elements more compact, easier to install, and therefore increases the number of possible sites. Further Capex and Opex improvements are possible by having one REC manage many towers, and increased deployment flexibility to add new cell sites.

BERT

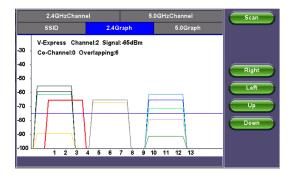
Test network performance with Layer 2, Layer 1 Framed and Unframed BERT with PRBS stress pattern. Verify BER, code violations, alarms and service disruption testing. CPRI Layer 2 test includes control words decode and frame capture capabilities to troubleshoot interoperability or RF performance issues.

Latency Measurement

Highly accurate latency measurements ensures that CPRI traffic between controller and the radio equipment stays below standard specifications.



WiFi Spectrum Analyzer


The TX300S offers a powerful portable spectrum analyzer on a USB dongle that displays all RF activity in the WiFi bands. With dual 2.4 GHz and 5 GHz bands support, the analyzer covers all 802.11a/b/g/n networks and is the ideal tool for enterprise environments with a mix of wireless technologies.

With multiple graphical format displays it helps to visualize and locate RF signals in the spectrums as well as locate and eliminate interference sources (cordless phones, microwave ovens, Bluetooth devices ,etc.), discover and remedy competing access points.

WiFi inSSIDer

The WiFi InSSIDer provides the best tools for WiFi networks discovery and performance troubleshooting. With compatible USB WiFi adapter for 802.11 a/b/g/n wireless in 2.4 GHz and 5 GHz bands the inSSIDer provides a clear picture of the environment. It helps identify poor channel placement, low signal strength and interferences in easy to understand graphs and tables.

WiFi Wiz

The WiFi Wiz function with USB WiFi adapter for 802.11 a/b/g/n wireless in 2.4 GHz and 5 GHz bands makes troubleshooting WiFi connectivity issues a simple task.

Scan for available networks and view all access points detailed information along with SSID, signal strength and channel allocation. Connect to Access Points with WEP/WPA or WPA2 encryption and verify IP capabilities to ensure the wireless network is properly installed and configured. A full suite of IP testing features is supported (ping, trace, web browser, etc.).

Tools	Scan	Connect	Network
	Ping	Trace Route	ARPWiz
🔍 IP Tools		AP List	
👩 Net Wiz	WIFI Scan Finished		
(1) WiFi Wiz	ESSID	BSSID	Channel
WIT WIZ	VeEX Office Protected via WEP	00:1A:DD:A5:51:C1	1 🔒 🚛
lanced 🍝	VeEX-CX180	00:24:B2:C0:02:2C	1 0 1
🚯 Browser	Protected via WPA2		•
~	VeEX.38 Protected via WPA2	00:16:B6:51:17:4A	6 🔒 🚮
	UXf00 Protected via WPA2	00:22:75:53:BD:7E	⁶ 🔒 🚛
Utilities	VeEX-Mktg14 Protected via WPA2	9C:D3:6D:AC:9C:3E	11 🔒 🚛
Files	G) Page 1 of 3 🕒	

ReVeal TX300S

Included standard with each test set, ReVeal PC software provides an easy-to-use and intuitive interface that allows you to take full advantage of your TX300S test unit by providing the following productivity tools:

- Convenient test profile management
- Flexible test results management
- Powerful report generation

Compatible with Windows XP, Windows Vista and Windows 7, 32 bits or 64 bits operating systems.

🎅 🏤 Home 🎾 Coni	nect 🤗 History 🐧 Tools 🕧	
esults - Report - My Test Re	port Existi	ng Reports Create Report
File Selection Report Deta	ills Comments Report Preview	and the second statement
Test Report Details		
Report Title	My Test Report	Tested by
Tested by (Company Name)	VeEx Inc	
For (Customer Name)		AFY
ReVeal Software Version	1.1.9	
Test Equipment	MX300/TX300 Series	Insert Logo Clear Log
Department Name		
Technician/Engineer Name	John Veex	For
Job Number	1234-1	
Report File Name	test-report-file-name	
Date Report was Created	Thursday, January 27, 2011	
Apply details from(option	Select Report Apply Details	Insert Logo Clear Log
itatus	< Back Next >	Create Report Cancel
Last connection Currently Method	Not Connected	

OTN/SDH/SONET/PDH/DSn Specifications

Key Features

- Flexible wavelength and bit rate options using industry standard SFPs and XFPs
- Single or Dual XFP optical ports supporting OTU2, OTU2e, OTU1e, STM-64, OC-192 bit rates
- Single or Dual SFP optical ports supporting OTU1, STM-16/4/1/0 and OC-48/12/3/1 bit rates
- Single or Dual unbalanced ports (BNC) for E1, E3, E4, DS1, DS3, STS-1, STM-0e and STM-1e
- Single or Dual balanced ports (RJ48 or Bantam) for E1 and DS1
- EoOTN Testing with OTU1e, OTU2e, ODU0 and ODUflex with Ethernet payloads
- Single or Dual BERT capabilities
- Coupled or independent Tx and Rx settings
- Tandem Connection Monitoring
- Service disruption testing (SDT) and APS
- Round trip delay on all interfaces and payload mappings
- Jitter/Wander Analysis (E1, E3, DS1, DS3 and STM-10, OC-3)

Test Setup

Test configuration, menus, and results are presented in VeEX's intuitive GUI, requiring little or no training for new or existing VePAL[™] users, maintaining a consistent user experience from the lab to the field.

Layer-based graphical configuration interface allow users to build the test signal in a logical layer by layer sequence

- OTN/SDH/SONET/PDH/DSn interface selection
- Optical or Electrical signal settings
- Mapping and Multiplexing
- Payload (Bulk, multiplexed, or Ethernet)
- Test Pattern (CBR) or Traffic (Packets)

TX Clock Source

Internal: ± 3.5 ppm stability per ITU-T G.812 Recovered: from the incoming signal External reference via Ext Clk (SMA) connector

• 1.544 MHz, 2.048 MHz, 1.544 Mbps, 2.048 Mbps High-stability 1PPS Sources

- Built-in GPS Clock option
- Built-in Atomic Clock option

Tx Frequency Offset: Up to 50 ppm (25,000 ppm for E1) in steps of 0.1 ppm for both optical and electrical interfaces Clock recovery (pulling range) per ITU-T G.703

Measurement Clock Reference

Internal: ± 3.5 ppm stability per ITU-T G.812 External Clock Input

• Unbalanced 75Ω SMA

• 1.544 MHz, 2.048 MHz, 1.544 Mbps, 2.048 Mbps High-stability 1PPS References

- Built-in GPS Clock option
- Built-in Atomic Clock option

Optical Interfaces*

- SFP and XFP transceivers conforming to Multi Source Agreement (MSA) specifications
- Compliant to ITU-T G.957/G.691 Optical interfaces and systems relating to SDH

Optical Power Measurement: ± 2 dB accuracy, 1 dB resolution Safety: Class 1, per FDA/CDRH, EN (IEC) 60825 eye safety regulations Operating temperature range: -10°C to 70°C

ROHS compliant and Lead Free per Directive 2002/95/EC

Transceiver			SF	-P			XFP		
Data rate	STM-4/OC-12 622 Mbps STM-1/OC-3 155 Mbps STM-0/OC-1 51 Mbps		OTU1 2666 Mbps STM-16/OC-48 2488 Mbps STM-4/OC-12 622 Mbps STM-1/OC-3 155 Mbps STM-0/OC-1 51 Mbps			OTU2e 11.095 Gbps OTU1e 11.045 Gbps OTU2 10.709 Gbps STM-64/OC-192 9.953 Gbps			
Part No.	301-01-004G	301-01-005G	301-01-006G	301-01-007G	301-01-008G	301-01-009G	301-04-002G	301-04-003G	301-04-004G
Wavelength (nm)	1310	1310	1550	1310	1310	1550	1310	1550	1550
Range (km)	15	40	80	15	40	80	10	40	80
Connector	LC	LC	LC	LC	LC	LC	LC	LC	LC
Line coding	NRZ	NRZ	NRZ	NRZ	NRZ	NRZ	NRZ	NRZ	NRZ
Tx Laser	FP	DFB	DFB	DFB	DFB	DFB	DFB	DFB	DFB
Tx Spectral width (nm)	2.5	1	1	1	1	1	1	1	1
Tx Power (dBm)	-15 to -8	-3 to +2	-3 to +2	-5 to 0	-2 to +3	-2 to +3	-6 to -1	-3 to +2	0 to +4
Rx Detector	PIN	PIN	PIN	PIN	APD	APD	PIN	PIN	APD
Rx Sensitivity									
155 Mbps	-28 to -8	-28 to -8	-28 to -8	-23 to -10	-30 to -15	-30 to -15	n/a	n/a	n/a
622 Mbps	-28 to -8	-28 to -8	-28 to -8	-22 to 0	-29 to -9	-29 to -9	n/a	n/a	n/a
2488 Mbps	n/a	n/a	n/a	-18 to 0	-27 to -9	-28 to -9	n/a	n/a	n/a
2666 Mbps	n/a	n/a	n/a	-18 to 0	-27 to -9	-28 to -9	n/a	n/a	n/a
9.953 Gbps	n/a	n/a	n/a	n/a	n/a	n/a	-14.4 to +0.5	-16 to -1	-24 to -7
10.7 Gbps	n/a	n/a	n/a	n/a	n/a	n/a	-14.4 to +0.5	-16 to -1	-24 to -7
11.049 Gbps	n/a	n/a	n/a	n/a	n/a	n/a	-13.4 to +0.5	-15 to -1	-22 to -7
11.095 Gbps	n/a	n/a	n/a	n/a	n/a	n/a	-13.4 to +0.5	-15 to -1	-22 to -7

*Data rates, performance, and supported transmission protocols are only guaranteed for SFPs and XFPs supplied by VeEX Inc. If selecting or using other vendors, users should excercise caution

OTN Functions

Key Features

- OTU2 (10.7 Gbps) and OTU1 (2.7 Gbps)
- OTU1e (11.049 Gbps) and OTU2e (11.095 Gbps) over-clocked bit rates
- EoOTN testing internally generated Ethernet payload mapped into OTU1e, OTU2e, ODU0 or ODUflex
- Synchronous and asynchronous mapping of SONET/SDH signals, including multiplexed PDH/DSn payloads
- OTU, ODU, OPU overhead manipulation and monitoring
- OTU, ODU, OPU layer alarms/errors generation and analysis
- OTU, ODU, TCMi trace messages
- Forward error correction (FEC) testing
- Tandem Connection Monitoring
- Service Disruption Time measurement and Events tracking
- Frequency offset generation

OTN Interfaces

Standards: ITU-T G.709, ITU-T G.798, ITU-T G.872 Test rates

- OTU2 (10.7 Gbps) Framed
- OTU1 (2.7 Gbps) Framed
- OTU1e (11.049 Gbps), OTU2e (11.0995 Gbps)

OTN Payloads

OTU2-ODU2-Bulk (test pattern)

- OTU2-ODU2-STM-64 or OC-192, synchronous and asynchronous, including all supported mappings and multiplexed tributaries, down to E1/DS1 (Nx64/Nx56k)
- OTU2-ODU2-ODU1-Bulk (test pattern)
- OTU2-ODU2-ODU1-STM-16 or OC-48, synchronous and asynchronous, including all supported mappings and multiplexed tributaries, down to E1/DS1 (Nx64/Nx56k)
- OTU2-ODU2-ODU1-ODU0-Bulk and 1GE payloads
- OTU2-ODU2-ODU0-Bulk and 1GE payloads
- OTU2-ODU2-ODUflex with Nx1.25G Ethernet payloads
- OTU1-ODU1-Bulk (test pattern)
- OTU1-ODU1-STM-16 or OC-48, synchronous and asynchronous, including all supported mappings and multiplexed tributaries, down to E1/DS1 (Nx64/Nx56k)
- OTU1-ODU0-Bulk and 1GE payloads
- OTU2e-ODU2e-Bulk and 10GE payloads
- OTU1e-ODU1e-Bulk and 10GE payloads

OTU Layer

Alarm and Error Monitoring

- Alarms: LOF, OOF, LOM, OOM, OTU-AIS, OTU-IAE, OTU-BDI, OTU-BIAE, OTU-TIM
- Errors: OTU-FAS, OTU-MFAS, OTU-BIP, OTU-BEI, Correctable FEC, Uncorrectable FEC

ODU Layer

Alarm and Error Monitoring

- Alarms: ODU-AIS, ODU-OCI, ODU-LCK, ODU-BDI, ODU-TIM
- Errors: ODU-BIP-8, ODU-BEI

OPU Layer

Payload Type (PT): Generates and displays received PT value Expected Payload label setting Enable/Disable PLM monitoring Alarm and Error Monitoring: Alarms: OPU-PLM

BER Test

Alarm and Error Monitoring

- Alarms: LSS (Loss Sequence Synchronization)
- Errors: Bit (Test Sequence Error)

Test Patterns

The following test sequences can be generated to fill the payload

SPECIFICATIONS

- PRBS: 2³¹-1, 2²³-1, 2²⁰-1, 2¹⁵-1, 2¹¹-1, 2⁹-1, 2⁷-1, QRSS
- Fixed: 0000, 1111, 1010, 1100, 1in8, 2in8, 3in24, DALY, NET55 and OCT55
- User defined: Ten 32-bit and one 24-Bit Programmable sequences

The following test sequences can be generated in Bulk mode

• PRBS: 2³¹-1 , 2²³-1

Error Insertion

OTN

• OTU-FAS, OTU-MFAS, OTU-BIP, OTU-BEI, Correctable FEC, Uncorrectable FEC, ODU-BIP, PM-BEI

Payload

Bit (Pattern)

- Injection Modes
 - Single, Count (# of errors), Fixed Rates (1E-9 to 1E-3)

Alarm Generation

Physical Layer

LOS
OTN

 OTU-LOF, OTU-LOM, OTU-AIS, OTU-IAE, OTU-BDI, OTU-BIAE, OTU-TIM, ODU-AIS, ODU-OCI, ODU-LCK, ODU-BDI, ODU-TIM, OPU-PLM

Generation Modes

• Continuous (manual), Count (0.1, 1, 10, 100 seconds)

OTN Overhead Analysis and Generation

Analysis – Decode and Display

- Byte Decoding
- On-screen Decode
- OTUk bytes in hexadecimal, binary or ASCII formats
- SM-TTI (SAPI, DAPI, User), SM-BIP, SM-BEI/BIAE, SM-BDI, SM-IAE
- GCC0 bytes
- ODUk bytes in hexadecimal, binary or ASCII formats
- DMp and DMti
- PM-TTI (SAPI, DAPI, User), PM-BIP, PM-BEI, PM-BDI, PM-STAT
- ODU-TCM-ACT, TCMi-TTI (SAPI, DAPI, User), TCMi-BIP, TCMi-BEI/BIAE, TCMi-BDI, TCMi-STAT
- GCC1, GCC2 bytes
- PCC/APS bytes
- OPUk bytes in hexadecimal and binary formats
- JC1, JC2, JC3, (JC4, JC5, JC6), PSI, NJO
- Reserved bytes
- Generation Programmable Bytes and sequences
 - OTU and ODU Trace Generation
 - SAPI (15 characters)
 - DAPI (15 characters)
 - User (31 characters)
 - Copy from received trace
 - TCMi Trace Generation
 - SAPI (15 characters)
 - DAPI (15 characters)
 - User (31 characters)
 - Copy from received trace
 - Set TCMi Status
 - ODU-TCM-ACT (Binary and Hex)

Programmable Expected Traces

- OTU and ODU SAPI, DAPI, and User
- Copy from received trace
- Enable/Disable TIM monitor

Tandem Connection Monitoring (TCM)

TCMi Monitoring (1 through 6)

- LTC, AIS, OCI, LCK, BDI, BIAE, IAE; count
- IEC, BEI; count and rate

Trace Identifier Monitoring and Generation

- Programmable SAPI, DAPI and User traces
- Copy trace from RX
- Enable/Disable TIM monitoring

Ethernet over OTN (EoOTN)

Optional Mappings

- Direct mapping of 10G Ethernet payload into OTU1e or OTU2e, synchronous or asynchronous
- Direct mapping of 1G Ethernet payload into ODU0
- Direct mapping of Nx1.25G Ethernet payload into ODUflex Ethernet Payload
 - Layer 1 Unframed or Framed
 - Layer 2, 3 and 4
 - VLAN: Up to 3 tags
 - MPLS: Up to 3 tags
 - Layer 4: TCP or UDP
- Ethernet Layer Testing*
 - BERT
 - RFC2544
 - Throughput
- Test Patterns (payload)
 - PRBS: 2¹¹-1, 2¹⁵-1, 2²³-1, 2³¹-1
 - Fixed: All 1s and All 0s
 - User-defined 32 bit sequence
 - Normal or Inverted

*Refer to the Ethernet Testing section for more details on Ethernet layer tests.

SDH/SONET Functions

SDH/SONET signals can be used as physical layer or as OTN payloads, and can contain multiplexed PDH/DSn clients, providing all the flexibility to address complex test scenarios

Key Features

- STM-64/16/4/1/0
- OC-192/48/12/3 and STS-1
- Bulk VC/STS/VT, PDH/DSn and multiplexed payloads
- Overhead manipulation and monitoring
- Alarms/errors generation and analysis
- Service Disruption Time (SDT) and APS
- One-way Delay (dual mode)
- Round Trip Delay
- Tributary Scan
- Tandem Connection Monitoring
- Pointer Test Sequences

SDH/SONET Interfaces

Optical

- SFP
- STM-0/OC-1, 51.840 Mbps, NRZ
- STM-1/OC-3, 155.520 Mbps, NRZ
- STM-4/OC-12, 622.080 Mbps, NRZ
- STM-16/OC-48, 2,488.320 Mbps, NRZ XFP
- STM-64/OC192, 9,953.280 Mbps, NRZ

Electrical

BNC (75 Ω unbalanced)

- STS-1/STM-0e, 51.84 Mbps, B3ZS
- STS-3/STM-1e, 155.520 Mbps, CMI

Receiver Sensitivity

- 51.840 Mbps (STS-1/STM-0e)
- Terminate: ≤ 10 dB (cable loss only)
- Monitor (PMP): \leq 26 dB (20 dB resistive, 6 dB cable loss)
- 155.520 Mbps (STM-1e)
- Terminate: \leq 12.7 dB (coaxial cable loss only)

Operating Modes

Normal (terminal)

- The instrument terminates the line, serving as source and sink for the generated traffic
- Offers full access to Overhead and Payload alarms and error generation and monitoring

Payload Through (intrusive)

- Instrument retransmits the received Payload and allows access to Overhead manipulation
- Offers access to Overhead alarms and error generation as well as Payload monitoring

Line Through (Transparent)

- Instrument regenerates and retransmits the entire received signal
- Offers minimal interaction with the test signal
- Provides full access to Overhead and Payload alarms and error monitoring

SDH Mappings

(According to ITU-T G.707)

- C-11 (Bulk/PRBS, unframed or framed DS1)
- C-12 (Bulk/PRBS, unframed or framed E1, asynchronous, bit or byte synchronous)
- C-3 (Bulk/PRBS, unframed, framed or channelized E3 or DS3) via AU-3 or AU-4
- C-4 (Bulk/PRBS, unframed or framed E4)
- C-4-4c (Bulk/PRBS)
- C-4-16c (Bulk/PRBS)
- C-4-64c (Bulk/PRBS)

SONET Mappings

(According to Telcordia GR-253/ANSI T1.105)

- VT-2 (unstructured or framed E1)
- VT-1.5 (unstructured or framed DS1, asynchronous or float byte synchronous)
- STS-1 SPE (unstructured or framed E3 or DS3)
- STS-3c SPE (unstructured or framed E4)
- STS-12c SPE (Bulk) STS-48c SPE (Bulk)
- STS-192c SPE (Bulk)

Test Patterns

The following test patterns can be generated

- PRBS: 2³¹-1 , 2²³-1, 2²⁰-1, 2¹⁵-1, 2¹¹-1 , 2⁹-1, 2⁷-1, QRSS
- Fixed: 0000, 1111, 1010, 1100, 1in8, 2in8, 3in24, DALY, NET55 and OCT55
- User defined: Ten 32-bit and one 24-Bit Programmable sequences
- Mode : Normal or Inverted

Errors

- SDH: FAS, B1, B2, MS-REI, B3, HP-REI, LP-REI, LP-BIP, and bit errors
- SONET: FAS, B1, B2, REI-L, B3, REI-P, REI-V, BIP-V, and bit errors
- Modes: Single, Count (# of errors), Fixed Rates (1E-9 to 1E-3)

Detection

- SDH: FAS, B1, B2, MS-REI, B3, HP-REI, LP-BIP, LP-REI, slips and bit errors
- SONET: FAS, B1, B2, REI-L, B3, REI-P, REI-V, BIP-V, slips and bit errors

Alarms

Generation

- SDH: LOS, LOF, MS-AIS, MS-RDI, RS-TIM, AU-LOP, AU-AIS, HP-UNEQ, HP-PLM, HP-RDI, HP-TIM, TU-LOM, TU-LOP, TU-AIS, LP-UNEQ, LP-PLM, LP-RDI, LP-RFI, LP-TIM, 2M AIS, 2M LOF, 2M RDI
- SONET: LOS, LOF, AIS-S, RDI-S, TIM-P, LOP-P, AIS-P, UNEQ-P, PLM-P, RDI-P, LOM-V, LOP-V, AIS-V, UNEQ-V, PLM-V, RDI-V, RFI-V, TIM-V, DS1-AIS, DS1-LOF, 2M-AIS, 2M-LOF, 2M-RDI, 45M-AIS, 45M-LOF

• Modes: Continuous (manual), Count (0.1, 1, 10, 100 seconds) Monitoring and Detection

- SDH: LOS, LOF, OOF, RS-TIM, MS-AIS, MS-RDI, AU-AIS, AU-LOP, HP-UNEQ, HP-PLM, HP-TIM, HP-RDI, TU-LOM, TU-AIS, TU-LOP, LP-UNEQ, LP-PLM, LP-TIM, LP-RDI, LP-RFI
- SONET: LOS, LOF, OOF, AIS-S, RDI-S, TIM-P, LOP-P, AIS-P, UNEQ-P, PLM-P, RDI-P, LOM-V, LOP-V, AIS-V, UNEQ-V, PLM-V, RDI-V, RFI-V, TIM-V

Overhead Analysis and Generation

Network Architectures supported

- Linear (per ITU-T G.783)
- Ring (per ITU-T G.841)

Analysis – Decode and Display SOH/POH bytes in hexadecimal, binary or ASCII formats

- S1 synchronization status
- C2 HP/STS signal label
- J0 trace identifier (1, 16 or 64 bytes) in ASCII format
- J1 trace identifier (16 or 64 bytes) in ASCII format
- J2 trace identifier (16 or 64 bytes) in ASCII format
- K1, K2 APS Control
- V5 LP/VT signal label
- Generation Programmable Bytes RSOH/Section
 - J0 trace: 1 byte hexadecimal, 16 byte ASCII with CRC-7 and 64 byte with CR+LF

MSOH/Line

- K1, K2 APS bytes per ITU-T G.783 and G.841
- S1 synchronization status message
- HO-POH (VC-4, VC-3)/STS-POH (STS-N SPE, STS-1 SPE)
- J1 trace: 16 byte ASCII with CRC-7 or 64 byte ASCII sequence
- C2 signal label
- H4 Sequence/Multiframe Indicator
- G1 (bit 5): End-to-end path status (RDI generation)
- K3 (bits 1-4) APS signaling
- LO-POH (VC-3)/STS-POH (STS-1 SPE)
 - J1 trace: 16 byte ASCII with CRC-7 or 64 byte ASCII sequence
 - C2 signal label
 - G1 (bit 5): End-to-end path status (RDI generation)
 - K3 (bits 1-4) APS signaling
- LO-POH (VC-12, VC-11)/VT-POH (VT-1.5, VT-2)
 - V5 (bits 5-7) LP/VT signal label
 - J2 trace: 16 byte ASCII with CRC-7 or 64 byte ASCII sequence
 - K4 (bits 3-4) LP/VT APS signaling

Tributary Scan

Automatically scans VC-12, VC-11, VT-1.5 or VT-2 for errors, alarms and events using a sequential BER tests

Pointer Analysis and G.783 Test Sequences

Pointer movements monitoring and generation for SDH and SONET Monitor

- AU, TU, STS and VT pointer adjustments
- SS bits, LOP, New Data Flags (NDF)
- Current value, increments, decrements, sum, difference
- Tributary frequency offset (ppm of AU/TU or STS/VT) Generation
 - Pointer sequences : ITU-T G.783, Telcordia GR-253
 - Pointer Types: AU, TU, STS, VT
 - Single pointer, increment, decrement, or increment/decrement
 - Sequence: Basic, Single Alternating, Regular Additive, Regular Cancel, Double Alternating, Burst, Transient Burst, 87/3, 87/3 Additive, 87/3 Cancel, Periodic Additive, Periodic Cancel
 - Programming of SS bits
 - Adjustments: Increment, Decrement, New Value
 - Parameters: N, T1, T2, T3, T4

Tandem Connection Monitoring (TCM)

Generation and analysis of N1 (HP-TCM) and N2 (LP-TCM) bytes Detection, display and analysis of events

• UNEQ, TC-AIS, TC-ODI, TC-IEC, TC-REI, TC-OEI, TC-LTC, TC-RDI

PDH/DSn Functions

While telecommunications network technologies have evolved to include long-distance high-capacity OTN and SDH/SONET trunks, PDH/DSn links and clients are frequently retained for voice, access, service delivery and other economic reasons. As such, testing PDH/DSn interfaces, payloads and services continue to play an important role in test and measurement.

This test set provides PDH/DSn interfaces, payload generation, access and testing capabilities for 140 Mbps (E4), 45 Mbps (DS3), 34 Mbps (E3), 2 Mbps (E1), 1.544 Mbps (DS1), down to N×64 and Nx56 kbps. PDH/DSn clients can be multiplexed into a higher PDH/DSn signal, mapped into SDH/SONET containers, and then mapped into OTN, giving it the flexibility to address complex test scenarios.

PDH/DSn Interfaces

Electrical

Dual RJ-48 (120 Ω) or Dual Bantam (100 Ω) balanced)

- DS1, 1.544 Mbps, AMI & B8ZS, 100 balanced
- E1, 2.048 Mbps, HDB3 & AMI, 120 $\!\Omega$ balanced
- BNC (75Ω unbalanced)
- E1, 2.048 Mbps, HDB3 & AMI
- E2, 8.448 Mbps, HDB3
- E3, 34.368 Mbps, HDB3
- DS3, 44.736 Mbps, B3ZS
- E4, 139.264 Mbps, CMI

Compliant to ITU-T G.703, G.823, G.824, G.772 and ANSI T1.102 Receiver Sensitivity

1.544 Mbps (DS1)

- Terminate: \leq 26 dB (cable loss only) at 0 dB DSX Tx
- Monitor (PMP): ≤ 26 dB (20 dB resistive, 6 dB cable loss)
- Bridge: ≤ 6 dB (cable loss only)
- Line Equalizer function provides increased dynamic range to support for LBO < -7.5 dB

2.048 Mbps (E1)

- Terminate: ≤ 6 dB (cable loss only)
- Monitor (PMP): ≤ 26 dB (20 dB resistive, 6 dB cable loss)
- Bridge: ≤ 6 dB (cable loss only)
- Line Equalizer function provides increased dynamic range to support for LBO < -7.5 dB

8.448 Mbps (E2)

• Terminate: ≤ 6 dB (cable loss only)

• Monitor (PMP): ≤ 26 dB (20 dB resistive, 6 dB cable loss) 34.368 Mbps (E3)

- Terminate: ≤ 12 dB (cable loss only)
- Monitor (PMP): ≤ 26 dB (20 dB resistive, 6 dB cable loss) 44.736 Mbps (DS3)
- Terminate: ≤ 10 dB (cable loss only)
- Monitor (PMP): ≤ 26 dB (20 dB resistive, 6 dB cable loss) 139.264 Mbps (E4)
- Terminate: ≤ 12 dB (coaxial cable loss only)

Operating Modes

Terminate, Monitor, Bridge (E1 & DS1)

Signal Structure

1.544 Mbps (DS1)

- Unframed or Framed SF (D4), ESF per ANSI/Telcordia standards
- Fractional test signal in N x 64 kbps or N x 56 kbps, where N=1 to 24 2.048 Mbps (E1)
 - Unframed or Framed with/without CRC per ITU-T G.704 (PCM30, PCM30C, PCM31, PCM31C)
- Fractional test signal in N x 64 kbps, where N=1 to 30/31 8.448 Mbps (E2)
- Unframed or Framed according to ITU-T G.742
- 34.368 Mbps (E3)
 - Unframed or Framed according to ITU-T G.751
- 44.736 Mbps (DS3)
- Unframed or Framed M13 & C-Bit Parity per ITU-T G.752/G.704 139.264 Mbps (E4)
 - Unframed or Framed per ITU-T G.751

Test Patterns

The following test patterns can be generated

- PRBS: 2³¹-1 , 2²³-1, 2²⁰-1, 2¹⁵-1, 2¹¹-1 , 2⁹-1, 2⁷-1, QRSS
- Fixed: 0000, 1111, 1010, 1100, 1in8, 2in8, 3in24, DALY, NET55 and OCT55
- User defined: Ten 32-bit and one 24-Bit Programmable sequences
- Mode: Normal or Inverted

Errors

Insertion

- 1.544 Mbps (DS1): Code, FAS, Bit, Frame, CRC
- 2.048 Mbps (E1): Code, FAS, CRC, EBIT, Bit errors
- 8.448 Mbps (E2): Code, 8M FAS, 2M FAS, 2M CRC, 2M RDI, Bit errors
- 34.368 Mbps (E3): Code, 34M FAS, 8M FAS, 2M FAS, 2M CRC, 2M RDI, Bit errors
- 44.736 Mbps (DS3): Code, FAS, MFAS, P/C-Parity, Bit errors
- 139.264 Mbps (E4): Code, FAS, Bit errors
- Modes: Single, Count (# of errors), Fixed Rates (1E-9 to 1E-3) Measurement
 - 1.544 Mbps (DS1): Code, FAS, Bit, Frame, CRC
 - 2.048 Mbps (E1): Code, FAS, CRC, EBIT and Bit errors
 - 8.448 Mbps (E2): Code, FAS, Bit errors
 - 34.368 Mbps (E3): Code, FAS, Bit errors
 - 44.736 Mbps (DS3): Code, FAS, MFAS, P/C-Parity, Bit errors
 - 139.264 Mbps (E4): FAS

Alarms

- Generation
 - 1.544 Mbps (DS1): AIS, yellow, idle, LOS, LOF
 - 2.048 Mbps (E1): LOS, AIS, LOF, RDI
 - 8.448 Mbps (E2): 8M AIS, 8M LOF, 8M RDI, 2M AIS, 2M LOF, 2M RDI
 - 34.368 Mbps (E3): 34M LOS, 34M AIS, 34M LOF, 34M RDI, 8M AIS, 8M LOF, 8M RDI, 2M AIS, 2M LOF, 2M RDI
 - 44.736 Mbps (DS3): LOS, LOF, OOF, AIS, Parity
 - 139.264 Mbps (E4): LOS, AIS, LOF, RDI

Measurement

- 1.544 Mbps (DS1): AIS, yellow, idle, LOS, LOF, LSS
- 2.048 Mbps (E1): LOS, AIS, LOF, LOMF, RDI, and LSS
- 8.448 Mbps (E2): LOS, AIS, LOF, RDI, and LSS
- 34.368 Mbps (E3): LOS, AIS, LOF, RDI, and LSS
- 44.736 Mbps (DS3): LOS, LOF, OOF, AIS, Parity, LSS
- 139.264 Mbps (E4): LOS, AIS, LOF, RDI
- Modes: Continuous (manual), Count (0.1, 1, 10, 100 seconds)

Measurement Functions

Test Results

Error count, ES, %ES, SES, %SES, UAS, %UAS, EFS, %EFS, AS, %AS, and rate for all events: errors, alarms and pointer events Performance Analysis

Measurements according to:

- ITU-T G.821: ES, EFS, SES and UAS with HRP 1% to 100%
- ITU-T G.826: EB, BBE, ES, EFS, SES, UAS; HRP of 1% to 100%
- In Service Measurement (ISM) using B1, B2, B3, FAS, CRC or Code (E1)
- Out of Service measurement (OOS) using bit errors (Test Sequence Error)
- ITU-T G.828: ES, EFS, SES, BBE, SEP, UAS with HRP 1% to 100%
- ITU-T G.829: ES, EFS, SES, BBE, UAS on RSOH (B1), MSOH (B2) or TSE
- ITU-T M.2100: ES, EFS, SES, UAS with HRP 1% to 100%
- User defined thresholds for Maintenance (MTCE) and Bringing into Service (BIS) objectives
- ITU-T M.2101: ES, EFS, SES, BBE, SEP, UAS with HRP 1% to 100%
- User defined thresholds for Maintenance (MTCE) and Bringing into Service (BIS) objectives. In service measurements on both near and far ends of path using TSE, HP-BIP/P-BIP (B3), MS-BIP/L-BIP (B2), RS-BIP/S-BIP (B1) and LP-BIP/V-BIP (V5)

Pulse Mask Analysis

PDH

- Bit rates: 2.048 Mbps (E1) and 34.368 Mbps (E3)
- Conformance Mask: ITU-T G.703

DSn

- Bit rates: 1.544 Mbps (DS1) and 44.736 Mbps (DS3)
- Conformance Masks: ITU-T G.703, ANSI T1.102, T1.403, T1.404

Mode: Non-Intrusive

Display: Pulse shape graph with Conformance mask verification (Pass/Fail)

Parameters: Width, Rise/Fall time, Overshoot/Undershoot

E1/DS1 VF Measurements Option

Codec: µ-Law or A-Law

- Programmable ABCD
 - Manual edit AB, ABCD or ON-HOOK, OFF-HOOK, WINK for DS1, and IDLE, SEIZE for E1

Independent Time Slot channel selection for TX and RX

- E1 channel: 1 -15, 17-31, 1 to 31
- DS1 channel: 1 to 24

Voice (Talk)

- VF drop/insert via headset
- 2.5 mm TRS audio jack for headset
- Listen to the audio channel in selected timeslot

Tone Generation and Measurement

- Transmit Frequency: 50 to 3950 Hz
- Transmit Level: -60 to 3 dBm

Results

- AB/ABCD bits monitor
- View Received Data in selected T/S
- Measure signal frequency and level in selected timeslot

DSn Functions*

DS1 and DS3 Auto-Monitor

Quickly auto-configures to the received signal and runs a health check Provides a summary screen with all alarm indications, frequency,

signal level, BPV/code errors, FBE, clock slips Histogram and bar graph representation of errors and alarms

Channelized DS3 support with selectable DS1 channel status

DS1 Loopback Commands

In-band: CSU, NIU FAC1, NIU FC2 ESF Facility Data Link (FDL) Control Line and payload HDSL Abbreviated (short)

- From Network (CO) or CPE
- NLOC, NDU1, NDU2, NREM

HDSL Long (In-band)

- From Network (CO) or CPE
- 2-wire and 4-wire
- HTU-C, H4R1, H4R2, H4R3, HTU-R
- Arm, Query Loop, Time-out override, Loopback Query, Loop Up, Loops down, Disarm commands
- Detailed confirmation messages

User Defined codes

- Programmable codes up to 16 bits
- Programmable time out

DS1 Multi-BERT™

Sequential BER testing with up to eight test patterns Any standard test pattern can be used, in any order Individual pattern timing up to 3599 seconds (1 hour) Bit, Code, FBE, ES, and total test time per pattern Monitors signal frequency, level (dB and dBm), and total CRC count

*These features are only available in the USA user interface mode

ISDN PRI Testing

TE and NT Emulation

Place/Receive voice and data calls

D-channel monitor with full decode: Layer 2 (Q.921) and Layer 3 (Q.931) 23B+D, 30B+D

Protocols

- DS1: National ISDN, AT&T, Nortel DMS
- E1: ETSI (Euro ISDN)
- Bidirectional protocol capture and decode
- Voice calls talk and listen via headset

In-band DTMF generation

Supports multi-rate N x 64k data calls

Parallel and sequential multi-call channel test

- All calls to a single number
- Multiple numbers from a programmable list
- Supplementary Services Test

Automatically tests the provisioning of CLIP, CLIR, COLP, CFU, CFB, CFNR, SUB, MSN, DDI, HOLD, UUS, TP, AOC-S, AOCD, AOCE, MCID, CUG

Common Functions & Measurements

Service Disruption and APS Testing

Service disruption time (SDT) measurements are integrated to the regular BER tests, supporting multi-layer sensor monitoring for OTN, SDH/SONET and PDH/DSn

OTN Sensors

- LOS, OTU-AIS
- OTU-LOF, OTU-LOM, OTU-IAE, OTU-BDI, SM-BIAE, ODU-AIS, ODU-LCK, ODU-OCI
- FAS, MFAS, OTU-BIP, OTU-BEI, ODU-BIP, ODU-BEI

SDH Sensors

- LOS, LOF, FAS
- B1, MS-AIS, MS-RDI, MS-REI, B2, AU-AIS, AU-LOP, B3, HP-RDI, HP-REI, TU-AIS
- PDH payload-related triggers
- LSS

SONET Sensors

- LOS, LOF, FAS
- S-BIP, AIS-L, RDI-L, REI-L, L-BIP, AIS-P, LOP-P, P-BIP, RDI-P, REI-P, AIS-V
- PDH payload-related triggers
- LSS

PDH (E1) Sensors

- E1-LOF, E1-AIS
- LSS

Pass/Fail range: 15 to 200 ms

Gate Time: 20 to 4000 ms

SDT Results Summary

- Last Service Disruption Time
- Longest Service Disruption Time
- Shortest Service Disruption Time
- Time stamps
- Resolution: 10 µs
- Total number of Service Disruptions events observed

Disruption Events Table

- Tracks every Service Disruption event for all layers
- Time stamp with 10 μs resolution
- Duration with 10 μs resolution
- Individual Pass/Fail Verdicts
- Tracks individual sensor events that occurred during the disruption period with time stamp and duration (10 μs resolution) APS Testing
 - SDH/SONET APS Byte (K1/K2) sequence capture and decode

Auto Configuration

Available for SDH, PDH, SONET and DSn signals

Identification of received signal - instrument configuration based on network type, bit rate, line coding, framing, mapping, and test pattern

Signal Level and Frequency Measurement

Available for Optical and Electrical Interfaces Signal level

Optical power in dBm and Loss/Saturation graph Electrical level in Volts peak-to-peak, dB and dBm

Frequency (Line and Payloads)

Resolution: 1 bit/s (bps)

Frequency Offset

Resolution: 0.1 ppm Current, Minimum and Maximum Clock Slips (E1 and DS1)

Round Trip Delay

(Available for all interfaces & mappings) Measurement Range: 1 μs to 10 seconds Resolution: ±1 μs or 1 U.I.

Event Logging

Date and time stamped records of all error and alarm events occurred during a test, presented in tabular format

Histograms

(Available for all interfaces)

Histogram: Simultaneous display of Errors and Alarms versus time for sequence of events correlation

Bar Graph: Individual Error or Alarm severity versus time Resolution: Seconds, minutes, hours and days

Soft LED Indicators

Summary indicators for Signal, Framing, Pattern sync and Errors/Alarms Display historical events and conditions

History reset function

• Clears the LED reminder without affecting the measurement counters

Jitter/Wander Analysis Options

Complete Jitter Test Suite

- Output Jitter measurement
- Jitter generation (1 Hz to 40 kHz)
- Maximum Jitter Tolerance test
- Jitter Transfer Function test

Graphical and tabular results Fully compliant to ITU-T 0.171 and 0.172

Jitter Measurements

HP1+LP (Wide-band Jitter) filter

- E1 (2M) 20 Hz to 100 kHz
- E3 (34M) 100 Hz to 800 kHz
- DS1 (1.5M) 10 Hz to 40 kHz
- DS3 (45M) 10 Hz to 400 kHz
- STM-1/OC-3 (155M Optical) 500 Hz to 1.3 MHz
- HP2+LP (High-band Jitter) filter
 - E1 (2M) 18 Hz to 100 kHz
 - E3 (34M) 10 Hz to 800 kHz
 - DS1 (1.5M) 18 Hz to 100 kHz
 - DS3 (45M) 30 Hz to 400 kHz

• STM-1/OC-3 (155M Optical) 65 Hz to 1.3 MHz Parameters: Current peak-peak, Maximum peak-peak Color-coded Pass/Fail indication according to ITU-T limits Standard Pass/Fail masks Units: UI (Unit Interval) Resolution: 0.01 UI Accuracy: Per ITU-T 0.171 and 0.172 Graphical display of Jitter behavior over time Test Duration: Continuous

Jitter Generation

Frequency: 1 Hz to 1.3 MHz Amplitude: 0.01 to 50 UIpp Resolution: 1 Hz, 0.01 UI

Wander Measurements

Fully compliant to ITU-T 0.171 and 0.172

Test Interfaces: E1 (2M), E3 (34M), DS1 (1.5M), DS3 (45M), and STM-1 (155M Optical)

Reference Clocks

- Port: SMA
- Sources: 2.048 Mbps, 1.544 Mbps, 2.048 MHz or 1.544 MHz, System 1PPS (GPS and/or Atomic Clock)

Parameters

- Real Time Measurements
- Time Interval Error (TIE), Maximum TIE (MTIE) per 0.171

MTIE/TDEV Wander Data Logging Option

Saves long-term real-time TIE samples directly to a USB memory for further MTIE and TDEV post-analysis, using VeEX's Wander Analysis PC software

Sample rates: 1, 5, 10, 30 samples/s Resolution: Down to 7 ns

MTIE & TDEV Pass/Fail Analysis

- Standard masks included
- User-defined masks

TIE, MTIE and TDEV comparisons Report Generation

Ethernet/Fibre Channel Interfaces

Ethernet Electrical

Dual 10/100/1000Base-T Ports: RJ45 connector Ethernet Classification: Per IEEE 802.3

Ethernet Optical

Dual SFP optical ports supporting 100BaseFX/ 1000BaseX

Dual XFP optical ports supporting 10GE (LAN/ WAN PHY)

Support for tunable XFP

Clock offset +/- 150 ppm

1/2/4G SFP*

100Base-FX/1000Base-X SFP Ports: LC connector 1/2/4G Fiber Channel SFP Port: LC connector SFP transceivers per Multi Source Agreement (MSA) ROHS compliant and Lead Free per Directive 2002/95/EC

Operating temperature range: -10°C to 70°C Eye Safety: Class 1, per FDA/CDRH, EN (IEC) 60825 Power Measurement: ± 2 dB accuracy, 1 dB resolution

Operating temperature range: -10°C to 70°C Eye Safety: Class 1, per FDA/CDRH, EN (IEC) 60825 Power Measurement: ± 2 dB accuracy, 1 dB resolution

8/10G XFP*

- 8/10G FC XFP Port, 10GE LAN and 10GE WAN PHY, LC connector
- XFP transceivers per Multi Source Agreement (MSA)
- ROHS compliant and Lead Free per Directive 2002/95/EC

Operating temperature range: -10°C to 70°C

- Eye Safety: Class 1, per FDA/CDRH, EN (IEC) 60825
- Power Measurement: ± 2 dB accuracy, 1 dB resolution

*Ethernet and Fibre Channel share SFP and XFP ports

**Data rates, performance, and supported transmission protocols are only guaranteed for SFPs and XFPs supplied by VeEX Inc. If selecting or using other vendors, users should exercise caution

Transceiver	SFP					
Data rate	1GE, 1G/2G FC			1GE, 1G/2G/4G FC		
Part No.	301-01-001G	301-01-002G	301-01-003G	301-01-010G	301-01-011G	301-01-012G
Wavelength (nm)	850	1310	1550	850	1310	1310
Range	300m	10 km	80 km	300m	4 km	10 km
Connector	LC	LC	LC	LC	LC	LC
Line coding	NRZ	NRZ	NRZ	NRZ	NRZ	NRZ
Tx Laser	VCSEL	DFB	DFB	VCSEL	FB	DFB
Tx Spectral width (nm)	0.85	1	1	0.85	1	1
Tx Power (dBm)	-9 to -3	-9.5 to +0.3	0 to +5	-9 to -2.5	-8.4 to -3	-8.4 to -1
Rx Detector	PIN	PIN	APD	PIN	PIN	PIN
Rx Sensitivity						
1.25 Gbps (GE)	-20 to 0	-22 to 0	-22 to 0	-20 to 0	-22 to 0	-22 to 0
1.0625 Gbps (FC)	-20 to 0	-22 to 0	-22 to 0	-20 to 0	-22 to 0	-22 to 0
2.125 Gbps (FC)	-18 to 0	-21 to 0	-21 to 0	-18 to 0	-21 to 0	-21 to 0
4.25 Gbps (FC)	n/a	n/a	n/a	-15 to 0	-18 to 0	-18 to 0

Transceiver	SFP				
Data rate	1000Base-X			100Base-FX	
Part No.	301-01-001G	301-01-002G	301-01-003G	301-01-013G	301-01-014G
Wavelength (nm)	850	1310	1550	1310	1310
Range	300m	40 km	80 km	2 km	15 km
Connector	LC	LC	LC	LC	LC
Tx Laser	VCSEL	DFB	DFB	LED	FP
Tx Spectral width (nm)	0.85	1	1	175	7.7
Tx Power (dBm)	-9 to -3	0 to +5	0 to +5	-20 to -15	-15 to -8
Rx Sensitivity					
1.25 Gbps	-20 to 0	-22 to 0	-22 to 0	n/a	n/a
125 Mbps	n/a	n/a	n/a	-31 to -14	-28 to -8

Transceiver	ХҒР			
Data rate	10 GE LAN and WAN, 8G and 10G FC			
Part No.	301-04-007G	301-04-002G	301-04-003G	301-04-004G
Wavelength (nm)	850	1310	1550	1550
Range	300m	10 km	40 km	80 km
Connector	LC	LC	LC	LC
Line coding	NRZ	NRZ	NRZ	NRZ
Tx Laser	VCSEL	DFB	EML	EML
Tx Spectral width (nm)	0.4	1	1	1
Tx Power (dBm)	-5 to -1	-6 to -1	-1 to +3	-1 to +3
Rx Detector	PIN	PIN	PIN	APD
Rx Sensitivity				
9.53 Gbps (10GE WAN)	-11.1 to +0.5	-14.4 to 0.5	-16 to -1	-24 to -7
10.3 Gbps (10GE LAN)	-11.1 to +0.5	-14.4 to +0.5	-16 to -1	-24 to -7
8.5 Gbps (FC)	n/a	n/a	n/a	n/a
10.52 Gbps (FC)	-11.1 to +0.5	-14.4 to +0.5	-16 to -1	-24 to -7

Ethernet

Terminate

Loopback

Dual Port operation: Independent traffic generation and test capabilities on any two ports selected

Traffic Generation

Layer 1 Unframed (optical port only)/Framed, Layer 2, Layer 3, Layer 4 Test Frame Header

- IEEE 802.3 and Ethernet II (DIX) frames
- Configurable Source and Destination MAC and Ethernet Type
- VLAN stacking up to 3 Q-in-Q tags w/configurable priority & type
- Fully configurable IPv4 or IPv6 header
- MPLS up to 3 labels with configurable Label/S/CoS and TTL fields
- MPLS-TP label with configurable LSP, PW and CW fields
- UDP/TCP header with configurable Source & Destination ports
- Provider Backbone Bridge (PBB) support with configurable Backbone MAC Source and Destination, I-SID, PBB-VLAN ID and priority

Fixed or Uniform distribution frame size from 64 to 10000 bytes (Layer 4 tests Fixed frame size up to 1518 only, uniform distribution not supported on 10GE)

Traffic Pattern: Constant, Ramp, Multi Bursts, Single Burst Error Injection: Single and Count; Symbol (Layer 1 Unframed, 1GE

only), Bit (L1 only), CRC, Pause, IP Checksum, TCP/UDP checksum Alarm Injection (10GE only): Count (duration) or Continuous

- 10GE LAN: Local Fault, Remote Fault, PCS-HI-BER, PCS-LOBL,
- 10GE WAN SONET: Local Fault, Remote Fault, LOF, AIS-L, RDI-L
- 10GE WAN SDH: Local Fault, Remote Fault, LOF, MS-AIS, MS-RDI

Bit Error Rate Test

Test Patterns

- 1GE and 10 GE PRBS: 2³¹-1, 2²³-1, 2¹⁵-1, 2¹¹-1, normal and inverted patterns, All 0s, All 1s and User Defined (Layer 2,3,4)
- 1GE: HFPAT, LFPAT, MFPAT CRPAT, RDPAT, JTPAT, SNPAT (Layer 1 Unframed) CRPAT, CJPAT, CSPAT (Layer 1 Framed)
- 10GE: PRBS, LAN Seed A and B (Layer 1 Unframed), CRPAT and CJPAT (Layer 1 Framed)

Error Measurements: Bit/BER, Symbol (1 GE Layer 1 Unframed),

FCS/CRC, Jabber/Runt frames, IP Checksum, TCP/UDP Checksum Alarm Detection

- 10GE: LOS, LOSync, PAT Loss, Service disruption (current, total, last, min/max, # of occurrences), Local Fault, Remote Fault, PCS-HI-BER, PCS-LOBL, WAN SONET Alarms: LOF, AIS-L and RDI-L WAN SDH Alarms: LOF, MS-AIS, MS-RDI
- 1GE: LOS, LOSync, PAT Loss, Service disruption (current, total, last, min/max, # of occurrences)

Frame/Packet Statistics

- Multicast, broadcast, unicast, pause frames, frame size distribution
- Rates (min, max, average and current): frame rate, bandwidth utilization, frame rate, line rate, data rate
- Frame arrival time (min, max, average and current), Frame Delay Variation

Multiple Streams Throughput Testing

- Up to 8 independent traffic streams generation and analysis, with configurable filters on 1GE interface
- Up to 10 independent traffic streams generation and analysis, with configurable filters on 10GE interface
- Each stream can be set with independent frame size, bandwidth, traffic profile, and QoS levels
- MAC flooding feature: generates test frames with up to 4096 incrementing Source and/or Destination MAC addresses
- VLAN flooding feature: generates test frames with up to 4096 incrementing VLAN IDs
- Test Patterns: PRBS: 2³¹-1, 2²³-1, 2¹⁵-1, 2¹¹-1, normal and inverted patterns, All 0s, All 1s and User Defined
- Error Measurements: Bit/BER (Single Stream only), FCS/CRC, Jabber/Runt frames, IP Checksum, TCP/UDP Checksum, Frame Loss (count and %), Out of Sequence

Alarm Detection

- 10GE: LOS, LOSync, Service disruption (current, total, last, min/max, # of occurrences), Local Fault, Remote Fault, PCS-HI-BER, PCS-LOBL, WAN SONET Alarms: LOF, AIS-L and RDI-L WAN SDH Alarms: LOF, MS-AIS, MS-RDI
- 1GE: LOS, LOSync, Service disruption (current, total, last, min/max, # of occurrences)

Frame/Packet Statistics

- Multicast, broadcast, unicast, pause frames, frame size distribution
- Rates (min, max, average and current): frame rate, bandwidth utilization, frame rate, line rate, data rate
- Frame arrival time (min, max, average and current), Frame Delay Variation
- Round Trip delay or one-way delay* (min, max, average and current) and Histogram distribution with configurable sampling period and threshold

* Requires GPS option

RFC2544 Compliance Testing

Automated tests compliant with RFC2544 with configurable threshold values and maximum transmit bandwidth settings

Throughput, Latency, Frame Loss, and Back-to-Back (burst) tests

- Frame sizes: 64, 128, 256, 512, 1024, 1280, 1518 bytes and 2 user configurable frames
- Test can be done to a remote loopback or to a remote test set with remote control of traffic generation and measurements at each end (requires asymmetric test option)

RFC2544 Advanced SLA Mode

- RFC2544 compliant test on primary test stream with up to 7 independent background traffic streams
- Each background stream can be set with independent frame size, bandwidth, traffic profile, and QoS levels
- Test can be done to a remote loopback or to a remote test set with remote control of traffic generation and measurements at each end (requires asymmetric test option)

ITU-T Y.1564 V-SAM Test

V-SAM test suite compliant with ITU-T Y.1564 standard Support for Multi-stream traffic generation, Service Configuration and Service Performance tests

Independently configurable for each stream

- Frame size: Fixed or EMIX pattern (1GE only)
- Bandwidth profile parameters: CIR, EIR, CBS (1GE only), EBS (1GE only) Traffic Policing
- Service acceptance criteria: FLR, FTD, IFDV, AVAIL
- Simple summary Pass/Fail results tables and drill down capability with detailed measurements (Frame Loss, Frame Transfer Delay, Frame Delay Variation, Availability) for each service

Link Level OAM - IEEE 802.3ah

Modes: Active and Passive, with configurable Vendor OUI, Vendor SPI, MAX PDU length, and PDU rate

Discovery capabilities: remote loopback, link events, MIB retrieval Link Events Notifications: Link Fault, Critical Event, Dying Gasp Remote Loopback control

Service Level OAM-IEEE 802.1ag, ITU-T Y.1731 and MPLS-TP OAM ITU-T G.8113.1

- MEP emulation with configurable MD name, MA name, local MEP ID, MD level, VLAN ID
- ITU-T G.8113.1 configurable LSP and PW label, CoS, TTL, GAL Label 13 or 14, CoS, TTL, ACH Channel Type
- Continuity Check Message (CCM): with priority level & interval selection
- Loopback Messages (LBM/LBR): loopback message generation and response to destination MEP or MAC address
- Link Trace Messages (LTM/LTR): link trace message generation and response to destination MEP or MA address with configurable TTL
- Loss Measurement Messages (LMM/LMR): loss measurement message generation and response to destination MEP or MAC with configurable rate and number of messages
- Delay Measurement Messages (DMM/DMR): delay measurement message generation and response to destination MEP or MAC with configurable rate and number of messages

Smart Loopback Mode

Layer 1: incoming traffic looped back unchanged

- Layer 2: incoming traffic looped back with MAC source and destination addresses swapped
- Layer 3: incoming traffic looped back with MAC and IP source and destination addresses swapped
- Layer 4: incoming traffic looped with MAC, IP, and UDP/TCP ports swapped
- Configurable traffic filters on MAC and IP source and destination addresses, VLAN ID and Priority, IP Precedence and TOS, UDP source and destination ports
- All key measurements on received traffic provided on loopback unit

VePAL Discovery Function and Remote Control

- Discovery function to all VeEX VePAL devices within subnet or manual control of VeEX VePAL devices in routed network
- Remote Control of Loopback capability
- Remote Control of Asymmetric test capability for end-to end RFC2544 test

VLAN Scan and Monitor

Scans incoming traffic and discovers all VLAN flows including Q-in-Q tagging

Key statistics on traffic rates, alarms and errors are reported for monitored streams (up to 8)

IPv6

IPv6 compliant test traffic generation and analysis for all test applications

(Y.1564 V-SAM, RFC2544, BERT and Multi-stream Throughput) IPv6 Loopback capability

IPv6 Static or Stateless Auto Configuration, Ping and Trace Route functions

Layer 4-7 Features

V-Perf Test

TCP Throughput Compliant with RFC6349

- Stateful TCP Test at line rate
- TCP Client and Server modes
- Compatible with iPerf Client/Server
- MTU search per RFC4821
- Round Trip Time Measurement
- Configurable TCP Window sizes

Multi-Window size tests

Measurements: TCP Throughput rate (min, max, average), Transfer file size and duration, Transfer time ratio, TCP Efficiency %, Buffer Delay %

Ve-Test HTTP Test

HTTP Throughput Full line rate HTTP client mode Connection time to server Total Data Transfer time HTTP Throughput rates Requires VeTest Server

FTP Throughput Test

FTP Throughput Full line rate FTP client mode Connection time to server Total Data Transfer time Line rata throughput rates FTP Throughput rates Compatible with Linux and Windows FTP servers

Packet Network Synchronization

Modes of Operation

Master clock emulation: Offers recovered clock output (clock translation) for external analysis or to provide timing to other devices

Slave clock emulation: Offers recovered clock output (clock translation) for external analysis or to provide timing to other devices

ITU-T G.8261/SyncE

Master/Slave clock emulation

- ESMC SSM generation: configurable message type and rate Measurements
 - ESMC SSM messages counters
 - ESMC SSM messages display and decode
 - ESMC SSM messages capture in pcap format

IEEE 1588v2/PTP

Master clock emulation

- Unicast and multicast master emulation
- IPv4 and IPv6 support
- 2-step clock
- Configurable announce, Sync and Delay_req rates and domain number

Slave clock emulation

- Unicast or multicast slave emulation
- IPv4 and IPv6 support
- 1-step or 2-step clock
- Configurable announce, Sync and Delay_req rates and domain number

Measurements

- Message counters (Sync,Follow up, Delay Request/Response, Pdelay Request/Response, signaling, management)and statistics (Loss, CRC error, duplicate, out of order)
- PTP messages display and decode
- PTP messages capture in pcap format
- PDV measurements and graph display (Sync PDV, Delay_Req PDV)
- Round trip delay measurements and graph display
- IPG measurements and graph display

Clock Input and Output

Reference Clock (Master and Wander)

- Internal, System 1PPS (GPS and/or Atomic Clock)
- External: 1PPS, 2.048 Mbps, 2.048 MHz, 10 MHz, 25 MHz, 125 MHz

Recovered Clock Output

• 1PPS, 2.048 Mbps, 2.048 MHz, 10 MHz, 25 MHz, 125 MHz

Wander Measurements

Measures wander on SyncE or 1588v2 slave recovered clock signal Parameters

• Time Interval Error (TIE), Minimum TIE, Maximum TIE and MTIE Saves long-term real-time TIE samples directly to a USB memory

for further MTIE and TDEV post-analysis, using VeEX's Wander Analysis PC software

IP Services Testing

VoIP Testing

Codecs: G.711 μ-law, G.711 A-law

- Measurements: MOS (CQ and LQ) and ITU-T G.107 R-factor (CQ and LQ)
- Packet Statistics: Data throughput rate, packet loss, packet discard, OOS, duplicate, jitter

VoIP Check

 Simulates VoIP call to the nearest router by sending ICMP traffic with payload/rate matching VoIP traffic properties

VoIP Expert

- Client/Server mode provides bi-directional measurements
- Compatible with any VeEX field tester or centralized VeEX VX1000 Server software

VoIP Call Expert

- VoIP call setup: supports SIP and H.323 protocols
- Multi-call support: Up to 24 concurrent calls
- Configurable jitter buffer (fixed or dynamic)
- Incoming call Auto Answer
- STUN support
- Talk/Listen with built in microphone and speaker
- DTMF test (RFC4733)
- Signaling trace with protocol decode

IPTV

Mode: Monitor

Stream configuration: Unicast, multicast, IP address, Port number Codecs: MPEG2, MPEG4 (Part2) and MPEG4 Part10 (H.264) Probe function with streams auto-detection

IPTV image viewer for channel identification (does not decode encrypted streams)

Stream Analysis

- PIDs count
- PID MAP
- Transport Error count
- Data rates: Video, Audio, Data (Bandwidth and Packet Counts)

Video Analysis

- MOS_Video, Video Service Transmission Quality (VSTQ), Estimated Peak Signal to Noise Ratio (EPSNR ATIS)
- I/B/P Frame statistics (Bandwidth, # Frames Received, Lost, Impaired)

Audio Analysis

MOS_Audio

TR 101 290 Metrics

• Sync loss, sync byte error, PAT/PAT2 error, Continuity error, PMT/PMT2 error, PID error, transport error, CRC error, PCR discontinuity, PCR accuracy error

Network Troubleshooting Tools

IP Tools

Provides basic Ethernet and Internet connectivity to the test set as well as connectivity troubleshooting tools to Ethernet test ports (10/100/1000BaseT, 100FX/1000BaseX, 10GE) and Management port (10/100BaseT)

IP: IPv4 (Static, DHCP) and IPv6 (Static, Auto) and PPPoE

VLAN support

Ping, Trace Route check

HTTP Web browsing internet connectivity check

Packet Capture

Line rate Packet capture from test interfaces

- 10/100/1000BaseT
- 100FX/1000BaseX
- 10GE

Configurable capture filters

- MAC and IP
- UDP and/or TCP
- Multicast, Broadcast, IP Checksum error, UDP/TCP Checksum Error events

Integrated Wireshark[™] packet decode

Packet captures can be saved and exported PCAP capture format, compatible with Wireshark

Net Wiz

Network Discovery Tool

- Discovery: TX Frames, RX Frames, RX Errors, Advertised Speed, Advertised Duplex, Devices found, Networks found
- Devices: Total number, Routers, Servers, Hosts
- Device Details: Attribute, IP address, MAC address, Group Name, Machine Name, Ping OK
- Networks: IP Subnets, Hosts, Domains, Hosts Names

WiFi Wiz

Requires compatible USB WiFi adapter for a/b/g/n networks in 2.4 GHz and 5 GHz bands

Access Points scan with signal level and link quality measurement WEP/WPA1/WPA2 encryption

IP Connectivity test (Ping, trace route, ARPWiz, Web browser)

Provides Wi-Fi LAN access to the test set (e.g. VeExpress, R-Server, Remote Control, ReVeal)

WiFi inSSIDer

Requires compatible USB WiFi adapter for a/b/g/n networks in 2.4 GHz and 5 GHz bands

Network scan results in Graphical or table format

Lists: Network names, BSSID, encryption type, channel allocation, signal strength, co-channels, and overlapping channels

WiFi Spectrum Analyzer*

Supports 802.11 a/b/g/n Frequency Range: 2.400 to 2.495 GHz and 5.150 to 5.850 GHz Amplitude Range: -100 to -6.5 dBm Antenna: RP-SMA Planar, topographic, spectral view

* Requires Wi-Fi Spectrum Analyzer USB dongle

Fibre Channel

1.0625 Gbps, 2.125 Gbps, 4.25 Gbps, 8.5 Gbps, and 10.52 Gbps

Modes of Operation

Terminate, Loopback

Fibre Channel Topology

Point-to-Point

Primitive Sequence Protocols

Link initialization, link rest, link failure

Flow Control Buffer-to-Buffer Credit Configuration: 1-65535

Traffic Generation

FC-1 (with SOF and EOF frame delimiters) and FC-2 Frames Class 3 Service frames Scrambling/Descrambling (8.5 Gbps only) Configurable Header fields Configurable EOF (EOF_t, EOF_n), and SOF (SOF_i3, SOF_n3, SOF_f) Traffic Shaping: constant, ramp, burst Frame Length Configuration: 2148 bytes maximum

RFC2544 Compliance Testing

Automated tests compliant with RFC2544 with configurable threshold values for Throughput and Round Trip Delay (Latency) and maximum transmit bandwidth settings

Throughput, Latency, Frame Loss, and Back-to-Back (burst) tests Frame sizes: 64, 128, 256, 512, 1024, 1280, and 2000 bytes including 2 user configurable frames

Bit Error Rate Testing

NCITS-TR-25-1999 Patterns (FC-1): CRPAT, CSPAT, CJTPA PRBS Patterns (FC-2): 2³¹-1, 2²³-1, 2¹⁵-1, 2¹¹-1, normal and inverted selections, and user defined patterns Error Injection: Bit and CRC

Loopback Mode

FC-1

FC-2 (Layer 2): swaps the destination and source IDs (D-ID and S_ID)

Key Measurements

Optical power levels: transmit and receive optical levels in dBm

- Error Measurements: Bit error count, BER, symbol, FCS/CRC, oversize, undersize, frame loss (count and %), out of sequence frame count
- Alarm Detection: LOS, pattern loss, service disruption
- Traffic Statistics: bandwidth utilization, data rate, frame count, byte count, frame size distribution, buffer-to-buffer credit count, RR_RDY count, frame loss count and round trip delay
- Rates: line rate, framed rate, data rate, frames per second rate Delay (min, max, avg, current): round trip delay, frame arrival delay

CPRI/OBSAI Testing

- 614.4 Mbps, 1.2288 Gbps, 2.4576 Gbps, 3.072 Gbps, 4.9152 Gbps, 6.144 Gbps, 9.8304 Gbps interface per CPRI (Common Public Radio Interface) standard
- 768 Mbps, 1.536 Gbps, 3.072 Gbps, 4.9152 Gbps, 6.144 Gbps per OBSAI (Open Base Station Achitecture Initiative) standard
- Unframed BER (CPRI, OBSAI), Layer 1 Framed and Layer 2 (CPRI) BER Test with PRBS stress test pattern

CPRI Layer 2:

Error Injection: Bit, Code Violation Alarm Injection: LOS, LOF, SDI, RAI, RLOS, RLOF Error measurements: Bit, BER, CV, CV Rate, Pattern Loss Alarms detection: LOS, LOF, HLOF, HLOF, BLOF, SDI, RAI, RLOS, RLOF Latency measurement Service Disruption Test Frequency and Offset (current, min, max) TX/RX Hyperframes and NodeB Frames counters Configurable HDLC and Ethernet C&M channels Control Words decode CPRI Hyperframes capture

Fiber Optic Tools

Digital Fiber Inspection Scope

Dirty connectors can damage or degrade the performance of expensive optical modules, or produce inaccurate results. Inspecting and cleaning patch cords and pluggable optics connectors before mating them is always recommended.

This option allows popular digital video microscope probe models* to be connected directly to the TX300S through a USB 2.0 port. Featuring live video feed on the TX300S screen for visual analysis. It offers capture, compare (before and after), IEC 61300-3-3 Sect 5.4 Pass/Fail templates for SMF and MMF, save and export files to USB flash drives.

Visual Inspection

- Per IEC 61300-3-3
- Visual file selector
- SMF and MMF templates (Core, Cladding, Adhesive and Contact areas)
- Auto-scale reference dots
- Manual PASS/FAIL verdict
- Report Generation

*Not included. Check with factory for supported models

Optical Power Meter GUI**

Supports USB OPM dongles

The optional OPM helps checking for proper output power from optical ports before safely making an optical connection or running a test

- Numerical and bar graph readings
- Hold function
- Display Units: dBm, mW and μW
- User definable Maximum and Minimum power limits, with color-coded Pass/Fail indication

Optical Loss Meter function with zero reference calibration

- Loss limit settable in dB, dB/km and dB/mi
- ** For available Wavelength Range, Calibrated Wavelengths, Power Range, Accuracy and Connectors, refer to the USB dongle specs

Precision Timing References

The TX300S offers two highly accurate and stable clock reference options to provide precise timing to all its test modules. The physical clock can be used as a reference for frequency and wander measurements and the UTC time of day (ToD) can be used for time-sensitive tests like one-way-delay measurements.

Disciplining and holdover: Combining the accuracy of the GPS option, the stability of the Atomic clock option and its battery operation, theTX300S can offer precision clock reference even in places where GPS is not available or can't trusted (e.g. in-building or urban canyon applications).

GPS Option

The optional high-sensitivity GPS module (built-in) provides precise UTC synchronization to the TX300S, in the form of internal 1PPS clock synchronized to the coordinated second and time stamps. Erequency: 11, 1575 42 MHz

Frequency: L1, 1575.42 MHz

Channels: 20

- Sensitivity
 - Cold start: -144 dBm
- Tracking: -159 dBm Clock Output: 1PPS (internal) Accuracy
 - Time: 50 ns RMS
 - Position: 5m
- Acquisition Time
 - Cold start: 35s
- Hot start: 1s

Recommended Antenna

- Type: Active
- Gain: >15 dBi
- Noise: <1.5 dB
- Connector: SMA, 50 Ohms
- Power: 3.3 Vdc, 30 mA

Temperature range: 0 to 45°C

Atomic Clock Option

The optional built-in chip-scale Atomic Clock module provides a highly stable clock source to the TX300S, in the form of internal 1PPS or 10 MHz signals. The Atomic Clock can also be disciplined by the GPS (requires GPS option) and later be used in holdover mode for extended time (e.g. temporary holdover timing or frequency reference for indoor usage).

- Accuracy: ±50 ns
- Aging: < 3.0E-10/month
- Warm-up time: <120s
- Temperature range: 0 to 45°C

Modes of Operation

- Free running or GPS-disciplined
- Programmable disciplining time constant up to 10000s
- Sleep mode: Recalibrates the atomic clock while the test set is OFF and Battery > 50% charge
- Precision References (internal)
 - Frequency: Atomic 10 MHz
 - Phase/Time: Atomic 1PPS

Clock Wander & Phase Measurements

This option compares two clock sources and measures TIE (wander) or Timing Error (absolute phase error) differences between the signal present at the RX1 (BNC) test port and the external reference connected to the CLK (SMA) port or the optional internal GPS and Atomic clocks.

Reports current, minimum, maximum and average phase differences Phase Error vs. Time graph (last 600s)

Wander Resolution: 0.2 ns Phase Error Resolution: 1 ns Phase Accuracy: ± 6.4 ns

Real-time Wander & Phase Data Logging

Exports real-time TIE or Phase measurements to a USB memory for further post-processing using the built-in or PC-based MTIE & TDEV Wander Analysis applications.

Modes: E1, E3, DS1, SyncE, IEEE 1588v2, external clock signals Sampling rates: 1/s, 5/s, 10/s, and 30/s File formats

- VeEX's native TIE and Phase
- Open CSV TIE and Phase

VeEX MTIE/TDEV Wander Analysis PC software

- Provides further post-processing of clock stability data, such as MTIE and TDEV for long-term tests
- Frequency offset calculation and removal for relative TIE analysis
- Standard and user-programmable masks
- PDF report generation
- Fully resizable window, to accommodate any screen size and provide detailed zoom levels
- Compact stand-alone Windows(r) software. It can be carried in the same USB memory as the TIE data. No installation is necessary.

Platform Features & Options

ReVeal TX300S PC Software

Companion management software for PC Test results management

Advanced report generation with html, pdf, or csv formats, combine test results, add logos and comments

Test profiles management: Online or offline test profile creation, upload and download

Bluetooth Option***

Supports compatible USB Bluetooth[™] dongle for file transfers to PC and mobile devices and to provide IP connectivity

*** Requires compatible Bluetooth USB dongle

Remote Control Option

Remote control via VNC client, web browser, ReVeal TX300S, SCPI Remote PC software* Scripting via SCPI commands Connectivity: 10/100Base-T, Wi-Fi 802.11 a/b/g/n*

*Not included

VeEX Inc. 2827 Lakeview Court Fremont, CA 94538 USA Tel: +1.510.651.0500

Fax: +1.510.651.0505 www.veexinc.com customercare@veexinc.com

File Manager

Profiles: Save and recall test profiles

Saves results to internal SD card

View, Rename, Delete and Lock profile and result files

Filter and sort by Name, Test Mode, Test Type, Port, Date and Result/ Profile

Report generation: Test results generation in PDF format

Export test results and profiles via USB memory, Bluetooth, web browser, Data Card or ReVeal TX300S companion PC software File Backup and Retrieve to/from USB

Screen capture: Screen shots in .bmp format

General	
Size	290 x 140 x 66 mm (W x H x D)
	11.40 x 5.50 x 2.60 in
Weight	1.58 kg (3.5 lb)
Battery	Li-ion smart battery
	5200 mAh @ 10.8 VDC
	Field replaceable
Power Supply (AC Adaptor)	Input: 100-240 VAC, 50-60 Hz
	Output: 15 VDC, 5.33 A
Operating Temperature	0°C to 45°C (32°F to 113°F)
Storage Temperature	-20°C to 70°C (-4°F to 158°F)
Humidity	5% to 95% non-condensing
Display	TFT 7" full color touch-screen
	display
Ruggedness	Survives 1m drop to concrete on
	all sides
Management Interfaces	2x USB 2.0, 10/100Base-T
	Ethernet (RJ45), Serial RS232
	(RJ11), Bluetooth (optional via
	USB), Data Card (optional via
	USB), 802.11 b/g/n or a/b/g/n
	Wi-Fi (optional via USB)
Languages	Multiple languages can be
	supported
System Memory	128 MB RAM, 2 GB SD card

KOF

© 2014 VeEX Inc. All rights reserved.

VeEX is a registered trademark of VeEX Inc. The information contained in this document is accurate. However, we reserve the right to change any contents at any time without notice. We accept no responsibility for any errors or omissions. In case of discrepancy, the web version takes precedence over any printed literature

D05-00-066P C00 2014/10